The role of zirconium in the formation of structure and properties of titanium alloys during superplastic deformation

Authors

  • A.M. Alimzhanova National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan, Kazakhstan
  • A.Zh. Terlikbaeva National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan, Kazakhstan
  • B.T. Sakhova National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan, Kazakhstan
  • R.A. Shayakhmetova National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan, Kazakhstan
  • G.M. Koishina Satbayev University, Kazakhstan
  • A.A. Mukhametzhanova National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan, Kazakhstan
  • G.K. Maldybaev Kazakh-British Technical University, Kazakhstan

DOI:

https://doi.org/10.51301/ejsu.2025.i2.01

Keywords:

ultrafine-grained, severe plastic deformation, structure, nanoscale, superplasticity, zirconium

Abstract

This study investigates the effect of zirconium on the superplastic properties of titanium alloys at various temperatures and strain rates. It has been established that zirconium significantly influences the strain rate sensitivity coefficient (m), mechanical stability, and plasticity. At elevated temperatures, zirconium-containing alloys exhibit a stable m-value within a specific strain rate range, followed by a sharp decline. In contrast, zirconium-free alloys show a gradual decrease in m as the strain rate increases. The optimal temperature-strain rate conditions for superplastic deformation depend on zirconium content. Alloys with lower zirconium concentrations demonstrate high plasticity at moderate temperatures and intermediate strain rates, whereas alloys with higher zirconium content require lower strain rates to achieve uniform deformation. Beyond a certain threshold, an increase in zirconium content results in reduced plasticity and strain localization. Additionally, zirconium increases flow stress, while higher temperatures contribute to its reduction; however, this is accompanied by grain coarsening, which negatively affects mechanical properties. Microstructural analysis using scanning electron microscopy revealed that after superplastic deformation, all investigated alloys develop a fine-grained structure consisting of equiaxed α- and β-grains. The average grain size increases compared to the initial state, indicating dynamic recovery and recrystallization processes. The results confirm the feasibility of using these titanium alloys in superplastic forming technologies. The identified correlations provide a basis for optimizing thermomechanical processing parameters to achieve a balance between high plasticity and mechanical stability, which is crucial for industrial applications.

References

Meyers, M.A., Mishra, A. & Benson, D.J. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51, 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003

Valiev, R.Z., Estrin, Y. & Horita, Z. (2015). Fundamentals of superior properties in bulk Nano SPD materials. Materials Re-search Letters, 4, 1-21. https://doi.org/10.1080/21663831.2015.1060543

Valiev, R.Z., Estrin, Y. & Horita, Z. (2006). Producing bulk ultrafine-grained materials by severe plastic deformation. JOM, 58, 33-39. https://doi.org/10.1007/s11837-006-0213-7

Valiev, R.Z., Langdon, T.G. (2010). The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques. Advanced Engineering Materials, 12, 677-691. https://doi.org/10.1002/adem.201000019

Sergueeva, A.V., Stolyarov, V.V., Valiev, R.Z. & Mukherjee, A.K. (2001). Advanced mechanical properties of pure titanium with ultrafine-grained structure. Scripta Materialia, 45, 747-752. https://doi.org/10.1016/S1359-6462(01)01089-2

Valiev, R.Z. (1995). Approach to nanostructured solids through the studies of submicron grained polycrystals. Nanostructured Materials, 6, 73. https://doi.org/10.1016/0965-9773(95)00031-3

Salishchev, G.A., Galeyev, R.M. & Valiahmetov, O.R. (1994). Dynamic recrystallization of titanium. Izvestiya Akademii Nauk SSSR, Metally, (1), 125-129

Salishchev, G.A., Valiahmetov, O.R., Galeyev, R.M. & Malysheva, S.P. (1996). Formation of submicrocrystalline struc-ture in titanium during plastic deformation and its effect on me-chanical properties. Metally, (4), 86

Zherebtsov, S.V., Salishchev, G.A. & Galeyev, R.M. (2002). Formation of submicrocrystalline structure in titanium and its al-loy under severe plastic deformation. Defect and Diffusion Fo-rum, 208-209, 237-240. https://doi.org/10.4028/www.scientific.net/DDF.208-209.237

Zherebtsov, S.V., Galeyev, R.M. & Valiahmetov, O.R. (1999). Formation of submicrocrystalline structure in titanium alloys by severe plastic deformation. Kuznechno-Shtampovochnoe Pro-izvodstvo, (7), 17-22.

Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C. & Valiev, R.Z. (2001). Influence of ECAP routes on the micro-structure and properties of pure Ti. Materials Science and Engi-neering A, 299, 59. https://doi.org/10.1016/S0921-5093(00)01411-8

Raab, G.I., Soshnikova, E.P. & Valiev, R.Z. (2004). Influence of temperature and hydrostatic pressure during equal channel angular pressing on the microstructures of commercial-purity Ti. Materials Science and Engineering A, 387-389, 674-677. https://doi.org/10.1016/j.msea.2004.01.137

Stolyarov, V.V., Zhu, Y.T., Lowe, T.C. & Valiev, R.Z. (2001). Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Materials Science and Engineering A, 303, 82-89. https://doi.org/10.1016/S0921-5093(00)01884-0

Valiev, R.Z., & Alexandrov, I.V. (2000). Nanostructured mate-rials obtained by severe plastic deformation. Logos. https://doi.org/10.1016/S0079-6425(99)00007-9

Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C. & Valiev, R. Z. (2003). Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering A, 343, 43. https://doi.org/10.1016/S0921-5093(02)00366-0

Raab, G.I., Valiev, R.Z. (2008). Equal-channel angular pressing by the ‘Conform’ scheme for long-length nanostructured titani-um semi-finished products. Kuznechno-Shtampovochnoe Pro-izvodstvo. Obrabotka Metallov Davleniem, (1), 21-27

Segal, V.M., Reznikov, V.I. & Kopylov, V.I. (1994). Plastic structure formation processes in metals. Nauka i Tekhnika

Pippan, R., Hohenwarter, A. (2016). The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Mate-rials Research Letters, 4, 127-136. https://doi.org/10.1080/21663831.2016.1166403

Hohenwarter, A., Pippan, R. (2015). Fracture and fracture toughness of nanopolycrystalline metals produced by severe plastic deformation. Philosophical Transactions of the Royal So-ciety A, 373, 20140366. https://doi.org/10.1098/rsta.2014.0366

Hohenwarter, A., Pippan, R. (2011). An overview on the frac-ture behavior of metals processed by high-pressure torsion. Ma-terials Science Forum, 667-669, 671-676. https://doi.org/10.4028/www.scientific.net/MSF.667-669.671

Boyer, R., Welsch, G. & Collings, E.W. (1998). Materials prop-erties handbook: Titanium alloys. ASM International

Ritchie, R.O. (2011). The conflicts between strength and tough-ness. Nature Materials, 10(11), 817-822. https://doi.org/10.1038/nmat3115

Fan, J.K., Kou, H.C. & Lai, M.J. (2013). Relationship between fracture toughness and microstructure of a new near-β titanium alloy. Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 4, 3371-3378. https://doi.org/10.1007/978-3-319-48764-9_417

Skvortsova, S., Grushin, I., Umarova, O. & Speranskiy, K. (2017). Effect of rare-earth element addition on structure of heat-resistant Ti–6.5Al–4Zr–2.5Sn–2.4V–1Nb–0.5Mo–0.2Si titani-um alloy. MATEC Web of Conferences, 114, 02008. https://doi.org/10.1051/matecconf/201711402008

Kaibyshev, O.A. (1984). Superplasticity of industrial alloys. Metallurgiya.

Valiev, R.Z. & Alexandrov, I. V. (2007). Bulk nanostructured metallic materials: Production, structure, and properties. Academkniga.

Lutfullin, R.Ya., Kruglov, A.A., Mukhametrakhimov, M.Mh. & Rudenko, O.A. (2015). Superplasticity of metallic materials. Let-ters on Materials, 5(2), 185. https://doi.org/10.22226/2410-3535-2015-2-185-188

Grabski, M.V. (1975). Structural superplasticity of metals, 272 p. Metallurgiya.

Smirnov, O.M. (1979). Pressure treatment of metals in the state of superplasticity, 184 p. Mashinostroenie

Padmanabhan, K.A., Davies, J.J. (1980). Superplasticity, 314 p.. Springer-Verlag. https://doi.org/10.1007/978-3-642-81456-3

Novikov, I.I., Portnoi, V.K. (1981). Superplasticity of alloys with ultrafine grain, 168 p. Metallurgiya.

Kaibyshev, O.A. (1984). Superplasticity of industrial alloys (264 pp.). Metallurgiya.

Segal, V.M., Reznikov, V.I., Kopylov, V.I. & Pavlik, D.A. (1994). Plastic structure formation in metals. Nauka i Tekhnika.

Nieh, T.G., Wadsworth, J., Sherby, O.D. (1997). Superplastici-ty in metals and ceramics, 287 p. Cambridge University Press. https://doi.org/10.1017/CBO9780511525230

Vasin, R.A., Enikeev, F.U. (1998). Introduction to the super-plasticity mechanics. Gilem.

Padmanabhan, K.A., Vasin, R.A. & Enikeev, F.U. (2001). Superplastic flow: Phenomenology and mechanics. Springer-Verlag. https://doi.org/10.1007/978-3-662-04367-7

Chumachenko, E.N., Smirnov, O.M. & Tsepin, M.A. (2005). Superplasticity: Materials, theory, technology. KomKniga.

Segal, V.M., Beyerlein, I.J. & Tomé, C.N. (2010). Fundamen-tals and engineering of severe plastic deformation. Nova Science Publishers.

Langdon, T.G. (2016). Forty-five years of superplastic research: Recent developments and future prospects. Materials Science Forum, 838-839, 3-12. https://doi.org/10.4028/www.scientific.net/MSF.838-839.3

Sharifullina, E.R., Shveikin, A.I. & Trusov, P.V. (2018). Re-view of experimental studies on structural superplasticity: Inter-nal structure evolution of material and deformation mechanisms. PNRPU Mechanics Bulletin, 3, 103-127. https://doi.org/10.15593/perm.mech/2018.3.11

Mikhaylovskaya, A.V., Mosleh, A.O. & Kotov, A.D. (2017). Superplastic deformation behavior and microstructure evolution of near-α Ti-Al-Mn alloy. Materials Science and Engineering A, 708, 469-477. https://doi.org/10.1016/j.msea.2017.10.017

Mosleh, A.O., Mikhaylovskaya, A.V. & Kotov, A.D. (2018). Experimental investigation of the effect of temperature and strain rate on the superplastic deformation behavior of Ti-based alloys in the (α + β) temperature field. Metals, 8(10), 819. https://doi.org/10.3390/met8100819

Segal, V.M., Reznikov, V.I., Dobryshevshiy, A.E. & Kopylov, V.I. (1981). Plastic working of metals by simple shear. Russian Metallurgy (Metally), 1(1), 99-105

Gromov, N.P. (1967). Theory of metal forming. Metallurgiya.

Kaibyshev, O.A., Utyashev, F.Z. (2002). Superplasticity, struc-ture refinement, and processing of hard-to-deform alloys. Nau-ka.

Cheng, Y.Q., Zhang, H., Chen, Z.H. & Xian, K.F. (2008). Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation. Journal of Materials Processing Technolo-gy, 208(1-3), 29-34. https://doi.org/10.1016/j.jmatprotec.2007.12.095

Vasin, R.A., Enikeev, F.U., Kruglov, A.A. & Safiullin, R.V. (2003). On the identification of constitutive relations by the re-sults of technological experiments. Mechanics of Solids, 38(2), 90-100

Lee, S.W., Yeh, J.W. (2007). Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion. Materials Science and Engineering A, 460-461, 409-419. https://doi.org/10.1016/j.msea.2007.01.121

Downloads

Published

2025-04-30

How to Cite

Alimzhanova, A. ., Terlikbaeva, A. ., Sakhova, B. ., Shayakhmetova, R. ., Koishina, G. ., Mukhametzhanova, A. ., & Maldybaev, G. . (2025). The role of zirconium in the formation of structure and properties of titanium alloys during superplastic deformation. Engineering Journal of Satbayev University, 147(2), 1–9. https://doi.org/10.51301/ejsu.2025.i2.01