Thermodynamic calculations and construction of Ellingham and phase stability diagrams for the W-Ti-C-Co system
DOI:
https://doi.org/10.51301/ejsu.2025.i4.01Keywords:
thermodynamic modeling, phase diagram, Ellingham diagram, refractory materials, phase stability, bulk modulus, shear modulusAbstract
This study provides a thermodynamic analysis of phase equilibria and compound stability in the W–Ti–C–Co system using ab initio modeling, the Materials Project database, and HSC Chemistry 6. The focus is on identifying stable and metastable phases relevant to composite materials based on refractory metals and carbon with cobalt and titanium as alloying elements. Calculations yielded a list of characteristic phases, quaternary and ternary phase diagrams (Ti–W–C, Co–Ti–C, Co–W–C), Ellingham-type stability diagrams, and interfacial reaction maps. Mechanical properties were assessed via bulk and shear moduli, showing WC as the hardest and TiCo as the most ductile phase. The study predicts the likely formation of ternary carbides (W–Co, W–Ti), which strongly influence material properties. Fourteen interfacial reactions were identified, including carbide and intermetallic formation. Ellingham analysis showed Co2C is unstable above ~400°C, and Co7W6 is unfavorable at all temperatures, while WC remains stable up to ~1400°C, beyond which W2C dominates. These results deepen the understanding of phase behavior in multicomponent metal – carbon systems and support the development of thermally stable, mechanically optimized materials.
References
Fal'kovskii, V.A., & Kliachko, LI. (2005). Hard alloys. Mos-cow: Ruda i metally.
Andrievskii, R.A., & Ragulia, A.V. (2005). Nanostructured materials. Moscow: Akademiia.
Pugh, S.F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. https://doi.org/10.1080/14786440808520496
Hautier, G., Fischer, C.C., Jain, A., Mueller, T. & Ceder, G. (2010). Finding nature’s missing ternary oxide compounds us-ing machine learning and density functional theory. Chemistry of Materials, 22(12), 3762-3767. https://doi.org/10.1021/cm100795d
Ong, S.P., Jain, A., Hautier, G., Kang, B. & Ceder, G. (2010). Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electro-chemistry Communications, 12(3), 427-430. https://doi.org/10.1016/j.elecom.2010.01.010
Ong, S.P., Cholia, S., Jain, A., Brafman, M., Gunter, D., Ceder, G. & Persson, K.A. (2015). The Materials Application Pro-gramming Interface (API): A simple, flexible and efficient API for materials data based on Representational State Transfer (REST) principles. Computational Materials Science, 97, 209-215. https://doi.org/10.1016/j.commatsci.2014.10.037
Ångqvist, M.A., Rahm, J.M., Gharaee, L., &Erhart, P. (2019). Phase diagram of the Ti–W system from first-principles. arXiv preprint. arXiv:1904.04814. https://arxiv.org/abs/1904.04814
Shi, Y., Guo, C., Li, C., Du, Z., & Hu, D. (2022). Experimental investigation of isothermal sections in the Co–Ti–W system. Frontiers in Materials, 9, 880143. https://doi.org/10.3389/fmats.2022.880143
Bartel, C.J., Millican, S.L., Deml, A.M., Rumptz, J. R., Tumas, W., Weimer, A.W., & Holder, A.M (2018). Physical descriptor for the Gibbs energy of inorganic crystalline solids and tempera-ture-dependent materials chemistry. Nature Communications, 9, 4168. https://doi.org/10.1038/s41467-018-06682-4
Jain, A., Hautier, G., Ong, S. P., Moore, C., Fischer, C.C., Persson, K.A. & Ceder, G. (2011). Formation enthalpies by mixing GGA and GGA+U calculations. Physical Review B, 84(4), 045115. https://doi.org/10.1103/PhysRevB.84.045115
Ong, S.P., Wang, L., Kang, B. & Ceder, G. (2008). The Li–Fe–P–O2 phase diagram from first principles calculations. Chemis-try of Materials, 20(5), 1798-1807. https://doi.org/10.1021/cm702327g
Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C. & Ceder, G. (2016). Interface stability in solid-state batteries. Chemistry of Materials, 28(1), 266-273. https://doi.org/10.1021/acs.chemmater.5b04082
Belsky, A., Hellenbrandt, M., Karen, V.L. & Luksch, P. (2002). New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and de-sign. Acta Crystallographica Section B: Structural Science, 58(3), 364–369. https://doi.org/10.1107/S0108768102006948
Folch, R., Plapp, M. (2005). Quantitative phase-field modeling of two-phase growth. Physical Review E, 72(1), 011602. https://doi.org/10.1103/PhysRevE.72.011602
De Jong, M., Chen, W., Notestine, R., Persson, K., Ceder, G., Jain, A., Asta, M. & Gamst, A. (2016). A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Scientific Reports, 6, 34256. https://doi.org/10.1038/srep34256
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Engineering Journal of Satbayev University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
<div class="pkpfooter-son">
<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/80x15.png"></a><br>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.
</div>