Obtaining manganese pellets from manganese-containing technogenic waste
DOI:
https://doi.org/10.51301/ejsu.2025.i6.03Keywords:
manganese-containing waste, technological scheme, manganese concentrate, manganese pellets, strengthAbstract
Recycling manganese-rich industrial residues is a significant technological and environmental challenge in mining regions because it lowers long-term waste accumulation and provides a valuable supplementary feedstock for ferroalloy production. This study thoroughly examined fine-grained manganese sludge from the Ushkatyn-3 deposit (JSC «Zhayremsky GOK») using particle size analysis, X-ray fluorescence spectroscopy, X-ray diffraction, ICP-AES, and differential thermal analysis. Nearly all of the original technogenic material, which contained 15.0-18.3% Mn, was composed of barite, quartz, bixbyite, calcite, and braunite. Based on the identified granulometric and mineralogical properties, a gravity-magnetic beneficiation flowsheet was created. Sequential treatment using jigging, concentration tables, and high-intensity magnetic separation produced a finely dispersed manganese concentrate with a Mn content of 34.9-35.2% and a recovery of roughly 61%. Pelletizing mixtures containing calcium oxide, natural iron-bearing diatomite, and, in certain compositions, coke was made using the resultant concentrate. The formation of green pellets during granulation in an Eirich mixer-granulator has been examined in relation to binder content and particle-size distribution. The thermal behavior of the composite mixture was examined using TGA-DTA/DSC and quadrupole mass spectrometry, which revealed dehydration, carbonate breakdown, and polymorphic transformations of manganese phases over the temperature range of 200-1160°C. Because it offers adequate phase consolidation without partial melting, the sintering process proved that 1170°C is the optimal firing temperature. The formation of ferrobustamite (CaFe2Si2O4), hausmannite (Mn3O4), and jacobsite (MnFe2O₄) was verified by X-ray diffraction analysis of the fired pellets. This is the ferrosilicon calcium binding phase, which strengthens the agglomerates’ structural integrity. The sintered pellets’ high mechanical strength (up to 33.8 kg per pellet), apparent density of 1.45-1.91 g/cm³, and open porosity of 27-35% attest to their suitability as feedstock for ferromanganese alloy production. The developed beneficiation and agglomeration method represent an effective way to convert low-grade manganese sludge into useful metallurgical raw materials. The proposed technology reduces the environmental impact of tailings ponds and opens a viable path to the sustainable use of manganese-containing industrial waste.
References
International Manganese Institute. |Mn| Annual Review. (2019). Retrieved from: https://www.manganese.org/wp-content/uploads/2021/04/IMnI-2019-Annual-Review_ENG.pdf
Shekhar, S., Sinha, S., Mishra, D., Agrawal, A. & Sahu, K.K. (2021). Extraction of manganese through baking-leaching tech-nique from high iron containing manganese sludge. Materials Today: Proceedings, 46(3), 1499-1504. https://doi.org/10.1016/j.matpr.2020.12.637
Kenzhaliyev, B.K. (2019). Innovative technologies providing enhancement of nonferrous, precious, rare earth metals extrac-tion. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Com-plex Use of Mineral Resources, 3, 64-75. https://doi.org/10.31643/2019/6445.22
Yessengaliyev, D.A., Baisanov, A.S., Dossekenov, M.S., Kelamanov, B.S. & Almabekov, D.M. (2022). Thermophysical properties of synthetic slags of the FeO - MnO - CaO - Al2O3 – SiO2 system. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Complex Use of Mineral Resources, 4(328), 38-45. https://doi.org/10.31643/2022/6445.38
Shevko, V.M., Aitkulov, D.K., Badikova, A.D. & Tuleyev, M.A. (2021). Ferroalloy production from ferrosilicon manga-nese dusts. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources, 3(318), 43-50. https://doi.org/10.31643/2021/6445.27
Mehdilo, A., Irannajad, M. & Hojjati-Rad, M.R. (2013). Char-acterization and beneficiation of Iranian low-grade manganese ore. Physicochemical Problems of Mineral Processing, 49(2), 725-741. https://doi.org/10.5277/ppmp130230
Dyussenova, S., Lukhmenov, A., Imekeshova, M. & Akim-zhanov, Z. (2023). Investigation of the beneficiation of refracto-ry ferromanganese ores «Zhomart» deposits. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Re-sources, 329(2), 34-42. https://doi.org/10.31643/2024/6445.14
Cheraghi, A., Becker, H., Eftekhari, H., Yoozbashizadeh, H. & Safarian, J. (2020). Characterization and calcination behavior of a low-grade manganese ore, Materials Today Communications, 25, 101382. https://doi.org/10.1016/j.mtcomm.2020.101382.
Singh, V., Ghosh, T.K., Ramamurthy, Y. & Tathavadkar, V. (2011). Beneficiation and agglomeration process to utilize low-grade ferruginous manganese ore fines. International Journal of Mineral Processing, 99(1-4), 84-86. https://doi.org/10.1016/j.minpro.2011.03.003
Liu, B., Zhang, Y., Lu, M., Su, Z., Li, G. & Jiang, T. (2019). Extraction and separation of manganese and iron from ferrugi-nous manganese ores. A review. Minerals Engineering, 131, 286-303. https://doi.org/10.1016/j.mineng. 2018.11.016
Telkov, Sh.A., Motovilov, I.U., Daruesh, G.S., Kadyrsyzov, D.S. & Taubashev, S.R. (2018). Research of gravitational and magnetic enrichment of aged manganese sludges. Proceedings Satpayev’s readings «Innovative solutions to traditional prob-lems: Engineering and technology», 2, 527-531. Retrieved from: https://official.satbayev.university/ru/materialy-satpaevskikh-chteniy
Brynjulfsen, T., Tangstad, M. (2013). Melting and reduction of manganese sinter and pellets. Proceedings of the Thirteenth In-ternational Ferroalloys Congress «Efficient technologies in fer-roalloy industry», 137-147. Retrieved from: https://www.pyrometallurgy.co.za/InfaconXIII/0137-Brynjulfsen.pdf
Faria, G.L., Tenório, J.A.S., Jannotti, N. Jr., da S. & Araújo, F.G. (2015). A geometallurgical comparison between lump ore and pellets of manganese ore. International Journal of Mineral Processing, 137, 59-63. https://doi.org/10.1016/j.minpro.2015.03.003
Zhang, Y., Zhang, B., Liu, B., Huang, J., Ye, J. & Li, Y. (2022). Physicochemical Aspects of Oxidative Consolidation Behavior of Manganese Ore Powders with Various Mn/Fe Mass Ratios for Pellet Preparation. Materials, 15(5), 1722. https://doi.org/10.3390/ma15051722
Zhang, Y., Liu, B., You, Zh., Su, Z., Luo, W., Li, G. & Jiang, T. (2016). Consolidation Behavior of High-Fe Manganese Ore Sinters with Natural Basicity. Mineral Processing and Extractive Metallurgy Review. An International Journal, 37(5), 333-341. https://doi.org/10.1080/08827508.2016.1218870
Zhunusov, A., Tolymbekova, L., Abdulabekov, Ye., Zholduba-yeva, Zh. & Bykov, P. (2021). Agglomeration of manganese ores and manganese containing wastes of Kazakhstan. Meta-lurgija, 60(1-2), 101-103. https://hrcak.srce.hr/file/357485
Zhu, D., Chun, T., Pan, J. & Zhang, J. (2013). Influence of basicity and MgO content on metallurgical performances of Bra-zilian specularite pellets. International Journal of Mineral Pro-cessing, 125, 51-60. https://doi.org/10.1016/j.minpro.2013.09.008
Yoshikoshi, H., Takeuchi, O., Miyashita, Ts., Kuwana, T. & Kishikawa, K. (1984). Development of composite cold pellet for silico-manganese production. Transactions of the Iron and Steel Institute of Japan, 24(6), 492-497. https://doi.org/10.2355/isijinternational1966.24.492
Shchedrovitsky, V.Ya., Eliseev, S.B. & Kopyrin, I.A. (1990). Study of technology for producing manganese-fluxed autoclave pellets and smelting high-carbon ferromanganese using them. Collection of conference materials «Theory and Practice of Manganese Metallurgy», 20-22.
Navaei, Sh., Ghorbani, M., Sheibani, S., Hosseini, L. & Zare, M. (2025). A review on hematite concentrate pelletization: effect of process parameters on iron ore pellet quality. Journal of Ma-terials Research and Technology, 38, 4849-4859. https://doi.org/10.1016/j.jmrt.2025.08.295
Gonidanga, B.S., Njoya, D., Lecomte-Nana, G. & Njopwouo, D. (2019). Phase Transformation, Technological Properties and Microstructure of Fired Products Based on Clay-Dolomite Mix-tures. Journal of Materials Science and Chemical Engineering, 7(11), 1-14. https://doi.org/10.4236/msce.2019.711001
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O. & De la Torre, M.J. (2001). Carbonate and silicate phase reac-tions during ceramic firing. European Journal of Mineralogy, 13, 621-634. https://doi.org/10.1127/0935-1221/2001/0013-0621.
Shtepenko, O., Hills, C., Brough, A. & Thomas, M. (2006). The effect of carbon dioxide on β-dicalcium silicate and Portland ce-ment. Chemical Engineering Journal, 118(1–2), 107-118. https://doi.org/10.1016/j.cej.2006.02.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Engineering Journal of Satbayev University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
<div class="pkpfooter-son">
<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/80x15.png"></a><br>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.
</div>
