Structural controls on rare-metal mineralization: Depth-specific mapping of economic deposits in Nigeria Basement Complex

Authors

  • E. Abraham Alex Ekwueme Federal University, Nigeria
  • M. Abdulfarra Abdulaziz University, Saudi Arabia
  • M. Emetere Bowen University, Nigeria
  • A. Usman Alex Ekwueme Federal University, Nigeria
  • I. Ikeazota Alex Ekwueme Federal University, Nigeria

DOI:

https://doi.org/10.51301/ejsu.2025.i6.04

Keywords:

magnetic data, minerals exploration, depths, structural controls, mining, basement complex

Abstract

This study aims to identify prospective zones for mineral exploration and enhance understanding of mineralization processes within Precambrian terrains. High-resolution aeromagnetic data were analyzed using integrated geophysical techniques such as Analytic Signal, Tilt Derivative, Phase Symmetry, Source Parameter Imaging, Butterworth bandpass filtering, 3D magnetic anomaly inversion, and Euler Deconvolution to delineate subsurface structures and determine their spatial distribution, depths, and relationships to mineral occurrences. The results revealed NE-SW and NW-SE trending lineaments corresponding to major shear zones and fault systems that govern mineral emplacement. Shallow sources (250-500 m) are associated with industrial minerals such as clay, intermediate depths (500-720 m) relate to rare-metal pegmatites hosting columbite-tantalite and wolframite, while deep-seated structures (>1200 m) indicate potential source regions for mineralizing fluids. High-amplitude analytic signal anomalies (0.04-0.05 nT/m) coincide with geological contacts and structural boundaries marking zones of potential mineralization. This represents the first comprehensive investigation of subsurface mineralized structures in the region, and by applying multiple geophysical processing techniques, previously unmapped structural features were exposed and the vertical continuity of mineralized zones confirmed. The findings provide depth-specific mapping of economic mineral deposits, offering valuable insights for targeted exploration efforts and enabling more precise, cost-effective strategies for locating columbite-tantalite, wolframite, kaolin, and other economically significant minerals in the Basement Complex.

References

Subari, Erlangga, B.D., Maryani, E., & Arifin, D.N. (2021). Potential utilization of quartz sand and kaolin from tin mine tail-ings for whiteware. Mining of Mineral Deposits, 15(3), 1-6. https://doi.org/10.33271/mining15.03.001

Abraham, E.M., Uwaezuoke, A.E., & Usman, A.O. (2024). Geophysical investigation of subsurface mineral potentials in North-Central Nigeria: Implications for sustainable mining and development. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 192. https://doi.org/10.1007/s40948-024-00913-3

Abraham, E., Usman, A., Chima, K., Azuoko, G., & Ikeazota, I. (2024). Magnetic inversion modeling of subsurface geologic structures for mineral deposits mapping in southeastern Nigeria. Bulletin of the Mineral Research and Exploration, 173(173), 85-105 https://doi.org/10.19111/bulletinofmre.1267876

Usman, A.O., Abraham, E.M., Ezeh, C.C., Azuoko, G., Augus-tine, I.C., Chima, J.C., & Obinna, C.A. (2024). Structural mod-elling of subsurface geologic structures in Anambra and adjoin-ing Bida Basins using aeromagnetic data: Implications for min-eral explorations. Kuwait Journal of Science, 52, 100307. https://doi.org/10.1016/j.kjs.2024.100307

Abraham, E.M., Onwe, M.R., Usman, A.O., Gwazah, C.A., & Uchenna, M.E. (2022). Mapping of mineral deposits within gra-nitic rocks by aeromagnetic data-a case study from Northern Ni-geria. Arabian Journal of Geosciences, 15, 1656 https://doi.org/10.1007/s12517-022-10947-0

Leâo-Santos, M., Li, Y., & Moraes, R. (2015). Application of 3D-magnetic amplitude inversion, to iron oxidecopper-gold de-posits, at low magnetic latitudes: A case-study from Carajas Mineral Province, Brazil. Geophysics, 80(2), B13-B22. https://doi.org/10.1190/geo2014-0082.1

Obaje, N.G. (2009). The Benue Trough. Geology and Mineral Resources of Nigeria. Springer. 57. SBN 3-540-92684-4. https://doi.org/10.1007/978-3-540-92685-6

NGSA (2022). Nigeria Geological Survey Agency - Geological Map of Nigeria.

Ogezi, A.E. (1977). Geochemistry and Mineralization Potential of the Basement Complex Rocks of the Jos-Bukuru Complex, Nigeria. Nigerian Mining Journal, 4(2), 45-53.

Rahaman, M.A. (1988). Recent advances in the study of the Basement Complex of Nigeria. Precambrian Geology of Nige-ria, Geological Survey of Nigeria, 11-43.

McCurry, P. (1976). The Geology of the Precambrian to Lower Paleozoic Rocks of Northern Nigeria: A Review. In C. A. Kog-be (Ed.), Geology of Nigeria (pp. 15-39). Elizabethan Publish-ing Company.

Telford, W.M., Geldart, L.P., & Sheriff, R.E. (1990). Applied Geophysics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139167932

Woakes, M., Ajibade, A.C., & Rahaman, M.A. (1987). Some metallogenic features of the Nigerian basement. Journal of Afri-can Earth Sciences, 6(5), 655-664. https://doi.org/10.1016/0899-5362(87)90004-2

Ugwu, S.A., Nwankwoala, H.O., & Agada, E.A. (2017). Struc-tural Analysis and Aeromagnetic Interpretation of Spot Image for Mineral Potentials in the Jos-Plateau Area, North Central Nigeria. African Journal of Basic & Applied Sciences, 9(5), 303-310, https://doi.org/10.5829/idosi.ajbas.2017.303.310

Ennih, N., & Liégeois, J. (2008). The boundaries of the West African craton, with special reference to the basement of the Mo-roccan metacratonic Anti-Atlas belt. Geological Society, London, Special Publications, 297, 1-17. https://doi.org/10.1144/SP297.1

Caby, R. (2003). Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3-4), 133-159. https://doi.org/10.1016/

j.jafrearsci.2003.05.003

Dada, S.S. (2006). Proterozoic evolution of Nigeria. The Base-ment Complex of Nigeria and its mineral resources (A Tribute to Prof. M. A. O. Rahaman). Akin Jinad & Co. Ibadan, 29-44. https://www.scirp.org/reference/referencespapers?referenceid=1425168

Garba, I. (2003). Geochemical discrimination of newly discov-ered rare-metal bearing and barren pegmatites in the Pan-African (600 ± 150 Ma) basement of northern Nigeria. Applied Earth Science, 112(3), 287-292. https://doi.org/10.1179/

Adepoju, M. (2022). Structural control of ore mineralization in the southeastern margin of western Nigeria basement. Interna-tional Journal of Geosciences, 13, 547-556. https://doi.org/10.4236/ijg.2022.137029

Elueze, A.A. (1982). Geochemistry of the Ilesha granite-gneiss in the basement complex of southwestern Nigeria. Precambrian Research, 19(2), 167-177. https://doi.org/10.1016/0301-9268(82)90057-2

Ekwueme, B.N., & Kroner, A. (2006). Single zircon ages of migmatites in the Obudu Plateau, Cross River State, SE Nigeria. Journal of African Earth Sciences, 44(4-5), 403-407. https://doi.org/10.1016/j.jafrearsci.2005.11.013

Adekoya, J.A. (1998). The geology and geochemistry of the Maru Banded Iron-Formation, northwestern Nigeria. Journal of African Earth Sciences, 27(2), 241-257. https://doi.org/10.1016/S0899-5362(98)00059-1

Oyinloye, A.O. (2011). Geology and geotectonic setting of the basement complex rocks in south western Nigeria: Implications on provenance and evolution. Earth and Environmental Scienc-es, 98-117. https://doi.org/10.5772/26990

Okonkwo, C.T., & Folorunso, I.O. (2013). Petrochemistry and geotectonic setting of granitic rocks in Aderan area, SW Nigeria. Journal of Geography and Geology, 5(1), 30. https://doi.org/10.5539/jgg.v5n1p30

Ajibade, A.C., Woakes, M., & Rahaman, M.A. (1987). Protero-zoic Crustal Development in the Pan-African Regime of Nigeria. In Kroner, A., (Ed.), Proterozoic Lithospheric Evolution (pp. 259-271). Washington DC, USA: American Geophysical Un-ion.

Odeyemi, I. (1993). A comparative study of remote sensing images of the structure of the Okemesi fold belt, Nigeria. ITC Journal, 1993(1), 77-81.

Oluyide, P.O. (1988). Structural trends in the Nigerian basement complex. In: Oluyide, P.O., et al. (Eds.), Precambrian Geology of Nigeria. Geological Survey of Nigeria, 93-98.

Anifowose, A.Y.B., & Borode, A.M. (2007). Photogeological study of the fold structure in Okemesi area, southwestern Nige-ria. Journal of Mining and Geology, 43(2), 125-130. https://doi.org/10.4314/jmg.v43i2.18872

Kinnaird, J.A. (1984). Contrasting styles of Sn-Nb-Ta-Zn min-eralization in Nigeria. Journal of African Earth Sciences, 2(2), 81-90. https://doi.org/10.1016/S0731-7247(84)80001-4

Okunlola, O.A., & Ocan, O.O. (2009). Rare Metal (Ta-Sn-Li-Be) Distribution in Precambrian Pegmatites of Keffi Area, Cen-tral Nigeria. Nature and Science, 7, 90-99.

Ganguli, S.S., Pal, S.K., & Kumar, S.K.P. (2021). Insights into the crustal architecture from the analysis of gravity and magnetic data across Salem-Attur Shear Zone (SASZ), Southern Granu-lite Terrane (SGT), India: an evidence of accretional tectonics. Episodes, 44(4), 419 - 422. https://doi.org/10.18814/epiiugs/2020/020095

Abraham E., Itumoh O., Chukwu C., & Onwe R. (2018). Geo-thermal Energy Reconnaissance of Southeastern Nigeria from Analysis of Aeromagnetic and Gravity Data. Pure and Applied Geophysics, 176: 22-36. https://doi.org/10.1007/s00024-018-2028-1

Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Peirce, J.W., & Ruder, M.E. (2005). The historical de-velopment of the magnetic method in exploration. Geophysics, za (6), 33ND-61ND. https://doi.org/10.1190/1.2133784

Rajagopalan, S. (2003). Analytic Signal vs. Reduction to Pole: solutions for low magnetic latitudes. Exploration Geophysics, 34(4), 257-262. https://doi.org/10.1071/EG03257

Jain, S. (1988). Total magnetic field reduction-The pole or equa-tor? a model study. Canadian Journal of Exploration Geophys-ics, 24(2), 185-192. Retrieved from https://cseg.ca/wp-con-tent/uploads/1988_12_Sudhir_J_magnetic_field_reduction.pdf

Leu, L.K. (1981). Use of reduction-to-the-equator process for magnetic data interpretation. Geophysics, 47, 445.

Thurston, J.B., & Smith, R.S. (1997). Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPITM method. Geophysics, 62, 807-813. https://doi.org/10.1190/1.1444190

Proakis, J.G., & Manolakis, D.G. (2007). Digital Signal Pro-cessing: Principles, Algorithms, and Applications. Prentice Hall. Pearson.

Oppenheim, A.V., & Schafer, R.W. (2009). Discrete-Time Signal Processing. Pearson Education.

Usman, A.O., Nomeh, J.S., & Abraham, E.M. (2025). Subsur-face structural mapping a tool in understanding the Geodynamics of Mineralization within the North?Central Precambrian Base-ment of Nigeria, using aeromagnetic dataset. Earth Science In-formatics, 18, 169. https://doi.org/10.1007/s12145-024-01492-3

Roest, W.R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3D analytic signal. Geophysics, 57(1), 116-125. https://doi.org/10.1190/1.1443174

Cooper, G. & Cowan, D.. (2006). Enhancing potential field data using filters based on the local phase. Computers and Geosci-ences, 32(10), 1585-1591. https://doi.org/10.1016/j.cageo.2006.02.016

Adebisi, W.A., Folorunso, I.O., Abubakar, H.O., Olatunji, S., & Olaojo, M.O. (2024). Delineating structural features related to hydrothermal alterations for possible mineralization in share ar-ea, Kwara State Nigeria using aeromagnetic data. Indonesian Journal of Earth Sciences, 4(2), A1265. https://doi.org/10.52562/injoes.2024.1265

Kovesi, P. (1999). Image Features from Phase Congruency. Videre: Journal of Computer Vision Research, 1(3), 1-26. Re-trieved from https://www.cs.rochester.edu/u/brown/Videre/001/articles/v1n3001.pdf

Miller, H.G., & Singh, V. (1994). Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2-3), 213-217. https://doi.org/10.1016/0926-9851(94)90022-1

Verduzco, B., Fairhead, J.D., Green, C.M., & Mackenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116-119. https://doi.org/10.1190/1.1651454

Reid, A.B., Allsop, J.M., Grauser, H., Millet, A.J., Somerton, I.N. (1990). Magnetic interpretation in 3D using Euler-Deconvolution. Geophysics, 55, 80-91. https://doi.org/10.1190/1.1442774

Whitehead, N., & Musselman, C. (2005). Montaj Gravi-ty/Magnetic interpretation: Processing, analysis, and visualiza-tion system, for 3-D inversion of potential field data, for Oasis montaj v6.1. Geosoft Inc. ON, Canada

Thompson, D.T. (1982). Euldph: A new technique, for making computer-assisted, depth- estimates, from magnetic data, Geo-physics, 47. pp. 31-37. https://doi.org/10.1190/1.1441278

GEOSOFT (2007). Geosoft Oasis Montaj softeware. Version 8.3

Pilkington, M. (2009). 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74(1) P.L7-L15. https://doi.org/10.1190/1.3026538

Sacchi, M.D., & Ulrych, T.J. (1995). High-resolution velocity gathers and offset space reconstruction: Geophysics, 60, 1169-1177. https://doi.org/10.1190/1.1443845

Megwara, J.U., & Udensi, E.E. (2014). Structural analysis using aeromagnetic data: case study of parts of Southern Bida Basin, Nigeria and the surrounding basement rocks. Earth science re-search, 3(2), 27. https://doi.org/10.5539/esr.v3n2p27

Dzukogi, A.N.A., & Bello, M.M. (2022). Aeromagnetic Data Analysis and Interpretations to Investigate Solid Mineral Poten-tial in Part of Northwest Nigeria. African Journal of Advances in Science and Technology Research, 4(1), 125-138. Retrieved from https://publications.afropolitanjournals.com/index.php/ajastr/article/view/171

Ajana, O., Udensi, E.E., Momoh, M., Rai, J.K., & Muhammad, S.B., (2014). Spectral Depths Estimate of Subsurface Structures in Parts of Borno Basin, Northeastern Nigeria, using Aeromag-netic Data. IOSR Journal of Applied Geology and Geophysics, 2, 55-60.

Mekonnen, T.K. (2004). Interpretation and Geodatabase of Dykes Using Aeromagnetic Data of Zimbabwe and Mozam-bique. M.Sc. Thesis, ITC, Delft, 80 p.

Salem, A., Ravat, D., Gamey, T.J., & Ushijima, K. (2002). Analytic signal approach and its applicability in environmental magnetic investigations. Journal of Applied Geophysics, 49(4), 231-244. https://doi.org/10.1016/S0926-9851(02)00125-8

Omotunde, V.B., Olatunji, A.S., & Abdus-Salam, M.O. (2020). Rare Earth Elements Assessment in the Granitoids of Part of Southwestern Nigeria. European Journal of Environment and Earth Sciences, 1(5). http://doi.org/10.24018/ejgeo.2020.1.5.79

Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., & Thrane, K., Keulen, N. (2016). Europe's Rare Earth Element Resource Potential: An Overview of REE Metal-logenetic Provinces and Their Geodynamic Setting. Ore Geolo-gy Reviews, 72, 838-856. https://doi.org/10.1016/j.oregeorev.2015.09.019

Aliyu, A., Lawal, K.M., Abubakar, L.Y., Dada, I., & Olayinka, A. (2020). Geomagnetic Studies of Pegmatite Mineralization at Lema and Ndeji North-Central, Nigeria. Journal of Mining and Geology, 56(1), 81-89.

Yunusa, A., Hong, H., Salim, A., Amam, T., Liu, C., Xu, Y., Zuo, X., & Li, Z. (2024). Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria. Miner-als, 14(9), 869. https://doi.org/10.3390/min14090869

Nasuti, Y., & Nasuti, A. (2018). NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies, Geophysical J. International, 214(1), 36-45, https://doi.org/10.1093/gji/ggy117

Oruc, B., & Selim, H.H. (2011). Interpretation of Magnetic Data in the Sinop Area of Mid Black Sea, Turkey, Using Tilt Deriva-tive, Euler Deconvolution and Discrete Wavelet Transform. Journal of Applied Geophysics, 74, 194-204. https://doi.org/10.1016/j.jappgeo.2011.05.007

Amigun, J.O., Sanusi, S.O., & Audu, L. (2022). Geophysical characterisation of rare earth element and gemstone mineralisa-tion in the Ijero-Aramoko pegmatite field, southwestern Nigeria. Journal of African Earth Sciences, 104494. https://doi.org/10.1016/j.jafrearsci.2022.104494

Abraham, E.M., Nkitnam, E.E., & Itumoh, O.E. (2020). Inte-grated geophysical investigation of recent earth tremors in Nige-ria using aeromagnetic and gravity data. Environ Monit Assess, 192:352 https://doi.org/10.1007/s10661-020-08339-6

Salawu, N.B., Omosanya, K.O.L., Eluwole, A.B., Saleh, A., & Adebiyi, L.S. (2023). Structurally-controlled Gold Mineraliza-tion in the Southern Zuru Schist Belt NW Nigeria: Application of Remote Sensing and Geophysical Methods. Journal of Ap-plied Geophysics, 211, 104969. https://doi.org/10.1016/j.jappgeo.2023.104969

Dentith, M., Yuan, H., Johnson, S., Murdie, R., & Piña-Varas, P. (2018). Application of deep-penetrating geophysical methods to mineral exploration: Examples from Western Australia. Geo-physics, 83(3), https://doi.org/10.1190/geo2017-0482.1

Downloads

Published

2025-12-31

How to Cite

Abraham, E. ., Abdulfarra, M. ., Emetere, M. ., Usman, A. ., & Ikeazota, I. . (2025). Structural controls on rare-metal mineralization: Depth-specific mapping of economic deposits in Nigeria Basement Complex. Engineering Journal of Satbayev University, 147(6), 24–39. https://doi.org/10.51301/ejsu.2025.i6.04