Структурный контроль редкометалльной минерализации: глубинное картирование экономических месторождений в кристаллическом фундаменте Нигерии

Авторы

  • Э. Абрахам Федеральный университет Алекса Эквуэме, Нигерия
  • M. Абду́льфарадж Университет Абдулазиза, Саудовская Аравия
  • M. Эметере Университет Боуэн, Нигерия
  • A. Усман Федеральный университет Алекса Эквуэме, Нигерия
  • И. Икеазота Федеральный университет Алекса Эквуэме, Нигерия

DOI:

https://doi.org/10.51301/ejsu.2025.i6.04

Ключевые слова:

магнитные данные, разведка полезных ископаемых, глубины, структурный контроль, горное дело, кристаллический фундамент

Аннотация

Цель данного исследования заключается в выявлении перспективных зон для минералого-разведочных работ и углублении понимания процессов минерализации в пределах докембрийских террейнов. Высокоточные аэромагнитные данные были проанализированы с использованием комплекса интегрированных геофизических методов, включая аналитический сигнал, наклонное производное поле, фазовую симметрию, изображение параметров источников, полосовую фильтрацию Баттерворта, трёхмерную инверсию магнитных аномалий и деконволюцию Эйлера. Эти методы позволили выделить подповерхностные структуры, определить их пространственное распределение, глубины залегания и взаимосвязь с проявлениями полезных ископаемых. Результаты показали наличие линейных зон северо-восточного и северо-западного простираний, соответствующих главным зонам сдвига и разломным системам, контролирующим внедрение минерального вещества. Неглубокие источники (250-500 м) связаны с промышленными минералами, такими как глина; промежуточные глубины (500-720 м) с редкометалльными пегматитами, содержащими колумбит-танталит и вольфрамит; тогда как глубинные структуры (>1200 м) указывают на потенциальные области зарождения минерализующих флюидов. Высокоамплитудные аномалии аналитического сигнала (0.04-0.05 нТ/м) совпадают с геологическими контактами и структурными границами, обозначая зоны возможной минерализации. Данное исследование представляет собой первую комплексную работу, направленную на изучение подповерхностных минерализованных структур региона. Применение комплекса геофизических методов позволило выявить ранее неотражённые структурные особенности и подтвердить вертикальную непрерывность минерализованных зон. Полученные результаты обеспечивают глубинно-ориентированное картирование экономически значимых месторождений, предоставляя ценные сведения для целенаправленных геологоразведочных работ и способствуя разработке более точных и экономически эффективных стратегий поисков колумбит-танталита, вольфрамита, каолина и других промышленных минералов в пределах кристаллического фундамента.

Библиографические ссылки

Subari, Erlangga, B.D., Maryani, E., & Arifin, D.N. (2021). Potential utilization of quartz sand and kaolin from tin mine tail-ings for whiteware. Mining of Mineral Deposits, 15(3), 1-6. https://doi.org/10.33271/mining15.03.001

Abraham, E.M., Uwaezuoke, A.E., & Usman, A.O. (2024). Geophysical investigation of subsurface mineral potentials in North-Central Nigeria: Implications for sustainable mining and development. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 192. https://doi.org/10.1007/s40948-024-00913-3

Abraham, E., Usman, A., Chima, K., Azuoko, G., & Ikeazota, I. (2024). Magnetic inversion modeling of subsurface geologic structures for mineral deposits mapping in southeastern Nigeria. Bulletin of the Mineral Research and Exploration, 173(173), 85-105 https://doi.org/10.19111/bulletinofmre.1267876

Usman, A.O., Abraham, E.M., Ezeh, C.C., Azuoko, G., Augus-tine, I.C., Chima, J.C., & Obinna, C.A. (2024). Structural mod-elling of subsurface geologic structures in Anambra and adjoin-ing Bida Basins using aeromagnetic data: Implications for min-eral explorations. Kuwait Journal of Science, 52, 100307. https://doi.org/10.1016/j.kjs.2024.100307

Abraham, E.M., Onwe, M.R., Usman, A.O., Gwazah, C.A., & Uchenna, M.E. (2022). Mapping of mineral deposits within gra-nitic rocks by aeromagnetic data-a case study from Northern Ni-geria. Arabian Journal of Geosciences, 15, 1656 https://doi.org/10.1007/s12517-022-10947-0

Leâo-Santos, M., Li, Y., & Moraes, R. (2015). Application of 3D-magnetic amplitude inversion, to iron oxidecopper-gold de-posits, at low magnetic latitudes: A case-study from Carajas Mineral Province, Brazil. Geophysics, 80(2), B13-B22. https://doi.org/10.1190/geo2014-0082.1

Obaje, N.G. (2009). The Benue Trough. Geology and Mineral Resources of Nigeria. Springer. 57. SBN 3-540-92684-4. https://doi.org/10.1007/978-3-540-92685-6

NGSA (2022). Nigeria Geological Survey Agency - Geological Map of Nigeria.

Ogezi, A.E. (1977). Geochemistry and Mineralization Potential of the Basement Complex Rocks of the Jos-Bukuru Complex, Nigeria. Nigerian Mining Journal, 4(2), 45-53.

Rahaman, M.A. (1988). Recent advances in the study of the Basement Complex of Nigeria. Precambrian Geology of Nige-ria, Geological Survey of Nigeria, 11-43.

McCurry, P. (1976). The Geology of the Precambrian to Lower Paleozoic Rocks of Northern Nigeria: A Review. In C. A. Kog-be (Ed.), Geology of Nigeria (pp. 15-39). Elizabethan Publish-ing Company.

Telford, W.M., Geldart, L.P., & Sheriff, R.E. (1990). Applied Geophysics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139167932

Woakes, M., Ajibade, A.C., & Rahaman, M.A. (1987). Some metallogenic features of the Nigerian basement. Journal of Afri-can Earth Sciences, 6(5), 655-664. https://doi.org/10.1016/0899-5362(87)90004-2

Ugwu, S.A., Nwankwoala, H.O., & Agada, E.A. (2017). Struc-tural Analysis and Aeromagnetic Interpretation of Spot Image for Mineral Potentials in the Jos-Plateau Area, North Central Nigeria. African Journal of Basic & Applied Sciences, 9(5), 303-310, https://doi.org/10.5829/idosi.ajbas.2017.303.310

Ennih, N., & Liégeois, J. (2008). The boundaries of the West African craton, with special reference to the basement of the Mo-roccan metacratonic Anti-Atlas belt. Geological Society, London, Special Publications, 297, 1-17. https://doi.org/10.1144/SP297.1

Caby, R. (2003). Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3-4), 133-159. https://doi.org/10.1016/

j.jafrearsci.2003.05.003

Dada, S.S. (2006). Proterozoic evolution of Nigeria. The Base-ment Complex of Nigeria and its mineral resources (A Tribute to Prof. M. A. O. Rahaman). Akin Jinad & Co. Ibadan, 29-44. https://www.scirp.org/reference/referencespapers?referenceid=1425168

Garba, I. (2003). Geochemical discrimination of newly discov-ered rare-metal bearing and barren pegmatites in the Pan-African (600 ± 150 Ma) basement of northern Nigeria. Applied Earth Science, 112(3), 287-292. https://doi.org/10.1179/

Adepoju, M. (2022). Structural control of ore mineralization in the southeastern margin of western Nigeria basement. Interna-tional Journal of Geosciences, 13, 547-556. https://doi.org/10.4236/ijg.2022.137029

Elueze, A.A. (1982). Geochemistry of the Ilesha granite-gneiss in the basement complex of southwestern Nigeria. Precambrian Research, 19(2), 167-177. https://doi.org/10.1016/0301-9268(82)90057-2

Ekwueme, B.N., & Kroner, A. (2006). Single zircon ages of migmatites in the Obudu Plateau, Cross River State, SE Nigeria. Journal of African Earth Sciences, 44(4-5), 403-407. https://doi.org/10.1016/j.jafrearsci.2005.11.013

Adekoya, J.A. (1998). The geology and geochemistry of the Maru Banded Iron-Formation, northwestern Nigeria. Journal of African Earth Sciences, 27(2), 241-257. https://doi.org/10.1016/S0899-5362(98)00059-1

Oyinloye, A.O. (2011). Geology and geotectonic setting of the basement complex rocks in south western Nigeria: Implications on provenance and evolution. Earth and Environmental Scienc-es, 98-117. https://doi.org/10.5772/26990

Okonkwo, C.T., & Folorunso, I.O. (2013). Petrochemistry and geotectonic setting of granitic rocks in Aderan area, SW Nigeria. Journal of Geography and Geology, 5(1), 30. https://doi.org/10.5539/jgg.v5n1p30

Ajibade, A.C., Woakes, M., & Rahaman, M.A. (1987). Protero-zoic Crustal Development in the Pan-African Regime of Nigeria. In Kroner, A., (Ed.), Proterozoic Lithospheric Evolution (pp. 259-271). Washington DC, USA: American Geophysical Un-ion.

Odeyemi, I. (1993). A comparative study of remote sensing images of the structure of the Okemesi fold belt, Nigeria. ITC Journal, 1993(1), 77-81.

Oluyide, P.O. (1988). Structural trends in the Nigerian basement complex. In: Oluyide, P.O., et al. (Eds.), Precambrian Geology of Nigeria. Geological Survey of Nigeria, 93-98.

Anifowose, A.Y.B., & Borode, A.M. (2007). Photogeological study of the fold structure in Okemesi area, southwestern Nige-ria. Journal of Mining and Geology, 43(2), 125-130. https://doi.org/10.4314/jmg.v43i2.18872

Kinnaird, J.A. (1984). Contrasting styles of Sn-Nb-Ta-Zn min-eralization in Nigeria. Journal of African Earth Sciences, 2(2), 81-90. https://doi.org/10.1016/S0731-7247(84)80001-4

Okunlola, O.A., & Ocan, O.O. (2009). Rare Metal (Ta-Sn-Li-Be) Distribution in Precambrian Pegmatites of Keffi Area, Cen-tral Nigeria. Nature and Science, 7, 90-99.

Ganguli, S.S., Pal, S.K., & Kumar, S.K.P. (2021). Insights into the crustal architecture from the analysis of gravity and magnetic data across Salem-Attur Shear Zone (SASZ), Southern Granu-lite Terrane (SGT), India: an evidence of accretional tectonics. Episodes, 44(4), 419 - 422. https://doi.org/10.18814/epiiugs/2020/020095

Abraham E., Itumoh O., Chukwu C., & Onwe R. (2018). Geo-thermal Energy Reconnaissance of Southeastern Nigeria from Analysis of Aeromagnetic and Gravity Data. Pure and Applied Geophysics, 176: 22-36. https://doi.org/10.1007/s00024-018-2028-1

Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Peirce, J.W., & Ruder, M.E. (2005). The historical de-velopment of the magnetic method in exploration. Geophysics, za (6), 33ND-61ND. https://doi.org/10.1190/1.2133784

Rajagopalan, S. (2003). Analytic Signal vs. Reduction to Pole: solutions for low magnetic latitudes. Exploration Geophysics, 34(4), 257-262. https://doi.org/10.1071/EG03257

Jain, S. (1988). Total magnetic field reduction-The pole or equa-tor? a model study. Canadian Journal of Exploration Geophys-ics, 24(2), 185-192. Retrieved from https://cseg.ca/wp-con-tent/uploads/1988_12_Sudhir_J_magnetic_field_reduction.pdf

Leu, L.K. (1981). Use of reduction-to-the-equator process for magnetic data interpretation. Geophysics, 47, 445.

Thurston, J.B., & Smith, R.S. (1997). Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPITM method. Geophysics, 62, 807-813. https://doi.org/10.1190/1.1444190

Proakis, J.G., & Manolakis, D.G. (2007). Digital Signal Pro-cessing: Principles, Algorithms, and Applications. Prentice Hall. Pearson.

Oppenheim, A.V., & Schafer, R.W. (2009). Discrete-Time Signal Processing. Pearson Education.

Usman, A.O., Nomeh, J.S., & Abraham, E.M. (2025). Subsur-face structural mapping a tool in understanding the Geodynamics of Mineralization within the North?Central Precambrian Base-ment of Nigeria, using aeromagnetic dataset. Earth Science In-formatics, 18, 169. https://doi.org/10.1007/s12145-024-01492-3

Roest, W.R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3D analytic signal. Geophysics, 57(1), 116-125. https://doi.org/10.1190/1.1443174

Cooper, G. & Cowan, D.. (2006). Enhancing potential field data using filters based on the local phase. Computers and Geosci-ences, 32(10), 1585-1591. https://doi.org/10.1016/j.cageo.2006.02.016

Adebisi, W.A., Folorunso, I.O., Abubakar, H.O., Olatunji, S., & Olaojo, M.O. (2024). Delineating structural features related to hydrothermal alterations for possible mineralization in share ar-ea, Kwara State Nigeria using aeromagnetic data. Indonesian Journal of Earth Sciences, 4(2), A1265. https://doi.org/10.52562/injoes.2024.1265

Kovesi, P. (1999). Image Features from Phase Congruency. Videre: Journal of Computer Vision Research, 1(3), 1-26. Re-trieved from https://www.cs.rochester.edu/u/brown/Videre/001/articles/v1n3001.pdf

Miller, H.G., & Singh, V. (1994). Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2-3), 213-217. https://doi.org/10.1016/0926-9851(94)90022-1

Verduzco, B., Fairhead, J.D., Green, C.M., & Mackenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116-119. https://doi.org/10.1190/1.1651454

Reid, A.B., Allsop, J.M., Grauser, H., Millet, A.J., Somerton, I.N. (1990). Magnetic interpretation in 3D using Euler-Deconvolution. Geophysics, 55, 80-91. https://doi.org/10.1190/1.1442774

Whitehead, N., & Musselman, C. (2005). Montaj Gravi-ty/Magnetic interpretation: Processing, analysis, and visualiza-tion system, for 3-D inversion of potential field data, for Oasis montaj v6.1. Geosoft Inc. ON, Canada

Thompson, D.T. (1982). Euldph: A new technique, for making computer-assisted, depth- estimates, from magnetic data, Geo-physics, 47. pp. 31-37. https://doi.org/10.1190/1.1441278

GEOSOFT (2007). Geosoft Oasis Montaj softeware. Version 8.3

Pilkington, M. (2009). 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74(1) P.L7-L15. https://doi.org/10.1190/1.3026538

Sacchi, M.D., & Ulrych, T.J. (1995). High-resolution velocity gathers and offset space reconstruction: Geophysics, 60, 1169-1177. https://doi.org/10.1190/1.1443845

Megwara, J.U., & Udensi, E.E. (2014). Structural analysis using aeromagnetic data: case study of parts of Southern Bida Basin, Nigeria and the surrounding basement rocks. Earth science re-search, 3(2), 27. https://doi.org/10.5539/esr.v3n2p27

Dzukogi, A.N.A., & Bello, M.M. (2022). Aeromagnetic Data Analysis and Interpretations to Investigate Solid Mineral Poten-tial in Part of Northwest Nigeria. African Journal of Advances in Science and Technology Research, 4(1), 125-138. Retrieved from https://publications.afropolitanjournals.com/index.php/ajastr/article/view/171

Ajana, O., Udensi, E.E., Momoh, M., Rai, J.K., & Muhammad, S.B., (2014). Spectral Depths Estimate of Subsurface Structures in Parts of Borno Basin, Northeastern Nigeria, using Aeromag-netic Data. IOSR Journal of Applied Geology and Geophysics, 2, 55-60.

Mekonnen, T.K. (2004). Interpretation and Geodatabase of Dykes Using Aeromagnetic Data of Zimbabwe and Mozam-bique. M.Sc. Thesis, ITC, Delft, 80 p.

Salem, A., Ravat, D., Gamey, T.J., & Ushijima, K. (2002). Analytic signal approach and its applicability in environmental magnetic investigations. Journal of Applied Geophysics, 49(4), 231-244. https://doi.org/10.1016/S0926-9851(02)00125-8

Omotunde, V.B., Olatunji, A.S., & Abdus-Salam, M.O. (2020). Rare Earth Elements Assessment in the Granitoids of Part of Southwestern Nigeria. European Journal of Environment and Earth Sciences, 1(5). http://doi.org/10.24018/ejgeo.2020.1.5.79

Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., & Thrane, K., Keulen, N. (2016). Europe's Rare Earth Element Resource Potential: An Overview of REE Metal-logenetic Provinces and Their Geodynamic Setting. Ore Geolo-gy Reviews, 72, 838-856. https://doi.org/10.1016/j.oregeorev.2015.09.019

Aliyu, A., Lawal, K.M., Abubakar, L.Y., Dada, I., & Olayinka, A. (2020). Geomagnetic Studies of Pegmatite Mineralization at Lema and Ndeji North-Central, Nigeria. Journal of Mining and Geology, 56(1), 81-89.

Yunusa, A., Hong, H., Salim, A., Amam, T., Liu, C., Xu, Y., Zuo, X., & Li, Z. (2024). Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria. Miner-als, 14(9), 869. https://doi.org/10.3390/min14090869

Nasuti, Y., & Nasuti, A. (2018). NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies, Geophysical J. International, 214(1), 36-45, https://doi.org/10.1093/gji/ggy117

Oruc, B., & Selim, H.H. (2011). Interpretation of Magnetic Data in the Sinop Area of Mid Black Sea, Turkey, Using Tilt Deriva-tive, Euler Deconvolution and Discrete Wavelet Transform. Journal of Applied Geophysics, 74, 194-204. https://doi.org/10.1016/j.jappgeo.2011.05.007

Amigun, J.O., Sanusi, S.O., & Audu, L. (2022). Geophysical characterisation of rare earth element and gemstone mineralisa-tion in the Ijero-Aramoko pegmatite field, southwestern Nigeria. Journal of African Earth Sciences, 104494. https://doi.org/10.1016/j.jafrearsci.2022.104494

Abraham, E.M., Nkitnam, E.E., & Itumoh, O.E. (2020). Inte-grated geophysical investigation of recent earth tremors in Nige-ria using aeromagnetic and gravity data. Environ Monit Assess, 192:352 https://doi.org/10.1007/s10661-020-08339-6

Salawu, N.B., Omosanya, K.O.L., Eluwole, A.B., Saleh, A., & Adebiyi, L.S. (2023). Structurally-controlled Gold Mineraliza-tion in the Southern Zuru Schist Belt NW Nigeria: Application of Remote Sensing and Geophysical Methods. Journal of Ap-plied Geophysics, 211, 104969. https://doi.org/10.1016/j.jappgeo.2023.104969

Dentith, M., Yuan, H., Johnson, S., Murdie, R., & Piña-Varas, P. (2018). Application of deep-penetrating geophysical methods to mineral exploration: Examples from Western Australia. Geo-physics, 83(3), https://doi.org/10.1190/geo2017-0482.1

Загрузки

Опубликован

2025-12-31

Как цитировать

Абрахам, Э. ., Абду́льфарадж M. ., Эметере M. ., Усман A. ., & Икеазота, И. . (2025). Структурный контроль редкометалльной минерализации: глубинное картирование экономических месторождений в кристаллическом фундаменте Нигерии. Engineering Journal of Satbayev University, 147(6), 24–39. https://doi.org/10.51301/ejsu.2025.i6.04

Выпуск

Раздел

Науки о Земле