Solutions to improve the mining technology diagram for ore bodies at Vi Kem Copper Mine, Lao Cai province, Vietnam

Authors

  • T.T. Vu Hanoi University of Mining and Geology, Vietnam
  • P.Q. Le Hanoi University of Mining and Geology, Vietnam
  • D.T. Le Hanoi University of Mining and Geology, Vietnam
  • D.T.T. Vu Hanoi University of Mining and Geology, Vietnam

DOI:

https://doi.org/10.51301/ejsu.2025.i5.03

Keywords:

mining technology, solution, ore body, improvement, supplement, Vi Kem Copper Mine

Abstract

Designing and selecting a mining technology scheme for ore body conditions is complex because it depends on many factors. The technology schemes need to ensure efficiency and safety in the production process. Therefore, it is necessary to propose solutions to improve the mining technology scheme to exploit ore bodies to meet the current production requirements at underground mineral mines of the Vinacomin – Minerals Holding Corporation. Based on the current mining plan and mining technology design scheme of the Vi Kem Copper Mine, the authors conducted a survey, analysis and evaluation, thereby proposing solutions to improve the mining technology scheme for ore bodies at the Vi Kem Copper Mine and selected an area in the mine to conduct design calculations for the proposed solution. To achieve the research results presented in this article, the authors used methods such as data collection, analysis and synthesis, field surveys, analysis of results and evaluation, combined with theoretical approaches to calculate the experimental design area. The proposed options to improve the mining technology diagram are highly feasible when applied. There is a high possibility of applying mechanization in technological stages, increasing productivity and production efficiency of the mine, increasing ventilation capacity, and improving labor safety. The improved technology is basically the same as the preparation plan of the old mining technology diagram. However, each item will be optimized to increase the application of mechanization, bringing about production efficiency and labor safety. The research results show high feasibility when applying the improved technology diagram. Technical calculations show that the mining capacity of each chamber is 1.76 times higher, and labor productivity is nearly 3 times higher than the current technological scheme.

References

Pysmennyi, S., Chukharev, S., Kourouma, I. K., Kalinichen-ko, V. & Matsui, A. (2023). Development of Technologies for Mining Ores with Instable Hanging Wall Rocks. Inżynieria Mineralna, 1(1(51), 103-112. https://doi.org/10.29227/IM-2023-01-13

Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S. & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901

Peremetchyk, A., Kulikovska, O., Shvaher, N., Chukharev, S., Fedorenko, S., Moraru, R. & Panayotov, V. (2022). Pre-dictive geometrization of grade indices of an iron-ore depos-it. Mining of Mineral Deposits, 16(3), 67-77. https://doi.org/10.33271/mining16.03.067

Stupnik, M., Fedko, M., Hryshchenko, M., Kalinichenko, O. & Kalinichenko, V. (2023). Study of Compensation Room Impacts on the Massіf Stability and Mined Ore Mass Quality. Inżynieria Mineralna, 1(1(51), 129-135. https://doi.org/10.29227/IM-2023-01-16

Remezova, O., Komsky, M., Komliev, O., Chukharev, S. & Vasylenko, S. (2023). Study of Valuable Impurities of Ore-Forming Titanium Minerals in the Ukraine. Inżynieria Min-eralna, 1(1(51), 189-194. https://doi.org/10.29227/IM-2023-01-24

Bouzeriba H., Bouzidi N., Idres A., Laala I., & Zaoui L. (2025). Feasibility assessment of low-grade iron ore from El Ouenza mine by high-intensity magnetic separation. Nau-kovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 28-33. https://doi.org/10.33271/nvngu/2025-1/028

Pysmennyi, S., Chukharev, S., Peremetchyk, A., Shvaher, N., Fedorenko, S. & Vu, T.T. (2023). Enhancement of the technology of caved ore drawing from the ore deposit foot-wall «triangle». IOP Conf. Series: Earth and Environmental Science, 1254, 012065. https://doi.org/10.1088/1755-1315/1254/1/012065

Kosenko, A.V. (2023). Development of an Efficient Process Scheme for Breaking High-Grade Iron Ores of Low Strength and Stability During Sublevel Caving. Science and innova-tion, 19(3), 38-47. https://doi.org/10.15407/scine19.03.038

Bazaluk, O., Anisimov, O., Saik, P, Lozynskyi, V., Akimov, O. & Hrytsenko, L. (2023). Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912

Serdaliyev, Y., Bakhramov, B. & Alip, A. (2025). Improve-ment of blasting technology at gold-ore mining enterprises using contour blasting. Mining of Mineral Deposits, 19(2), 83-94. https://doi.org/10.33271/mining19.02.083

Pysmennyi, S., Chukharev, S., Khavalbolot, K., Bondar, I. & Ijilmaa, J. (2021). Enhancement of the technology of mining steep ore bodies applying the «ffoating» crown. E3S Web of Conferences, 280, 08013. https://doi.org/10.1051/e3sconf/202128008013

Pysmennyi, S., Chukharev, S., Kyelgyenbai, K., Mutambo, V. & Matsui, A. (2022). Iron ore underground mining under the internal overburden dump at the PJSC «Northern GZK». IOP Conf. Series: Earth and Environmental Science, 1049, 012008. https://doi.org/10.1088/1755-1315/1049/1/012008

Lyashenko, V., Andreev, B. & Dudar, T. (2022). Substantia-tion of mining-technical and environmental safety of under-ground mining of complex-structure ore deposits. Mining of Mineral Deposits, 16(1), 43-51. https://doi.org/10.33271/mining16.01.043

Azaryan, A.A., Batareyev, A.S., Karamanits, F.I., Kolosov, B.A. & Morkun, V.S. (2018). Ways to reduce ore losses and dilution in iron ore underground mining in Kryvbass. Science and innovation, 14(4), 17-24. https://doi.org/10.15407/scine14.04.017

Li, J.G. & Zhan, K. (2018). Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment. Engineering. (4), 381-391. https://doi.org/10.1016/j.eng.2018.05.013

Liu, X., Zhan, K. & Zhang, Y.S. (2025). Research and appli-cation of multi-equipment autonomous mining system in the deep of Sanshandao gold mine. Archives of Mining Sciences, 70(2), 233-255. https://doi.org/10.24425/ams.2025.154661

Martins, A.G., Mahdi Badiozamani, M., Askari-Nasab, H., Assis, P.S. & Souza, M.J.F. (2024). An effective strategy for stacking and reclaiming iron ore piles. International Journal of Mining, Reclamation and Environment, 39(5), 347-363. https://doi.org/10.1080/17480930.2024.2400920

Sirjani, A.K., Sereshki, F., Ataei, M. & Hosseini, M.A. (2025). Prediction and optimization of ground vibration caused by blasts using a combination of statistical models and FROG algorithm (Case study: Gol-e-Gohar Iron Ore Mine No.1). Journal of Mining and Environment, 16(4), 1403-1416. https://doi.org/10.22044/jme.2024.14747.2793

Khuangan, N., Asainov, S., Khojayev, T., Azimbayeva, Z., Atageldiyev, K., Nurshaiykova, G. & Akylbayeva, A. (2024). Predicting the magnitude of technogenic earthquakes during underground mining of the Zhezkazgan ore field. Mining of Mineral Deposits, 18(1), 45-53. https://doi.org/10.33271/mining18.01.053

Maleki, M., Baeza, D., Soltani-Mohammadi, S., Madani, N., Díaz, E. & Anguita, F. (2024). Optimising the placement of additional drill holes to enhanced mineral resource classifica-tion: a case study on a porphyry copper deposit. Internation-al Journal of Mining, Reclamation and Environment, 39(2), 134-151. https://doi.org/10.1080/17480930.2024.2364131

Andradea, L.C., Dimitrakopoulosa, R. & Conway, P. (2024). Integrated stochastic optimisation of stope design and long-term production scheduling at an operating underground copper mine. International Journal of Mining, Reclamation and Environment, 38(8), 619-641. https://doi.org/10.1080/17480930.2024.2337499

Bazdar, H. & Imamalipour, A. (2024). The application of an improved artificial neural network model for prediction of Cu and Au concentration in the porphyry copperepithermal gold deposits, case study: Masjed Daghi, NW Iran. Interna-tional Journal of Mining and Geo-Engineering, 58(4), 327-339. https://doi.org/10.22059/IJMGE.2024.376761.595167

Nasirabad, H.M., Mohtasham, M. & Nanekaran, F.R. (2024). Performance Evaluation of a Haul Truck Allocation Model in Sungun Copper Mine. Journal of Mining and Environ-ment, 15(4), 1527-1537. https://doi.org/10.22044/jme.2024.13932.2597

Mekti, Z., Boutemedjet, A., Tahri, T., Benselhoub, A., Soli-man, A.M. & Bellucci, S. (2025). Petrographic characteriza-tion of the uranium ore of tahaggart (El-Hoggar, SE Algeria). Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(109), 64-72. https://doi.org/10.17721/1728-2713.109.09

Peremetchyk, A., Pysmennyi, S., Chukharev, S., Shvaher, N., Fedorenko, S. & Moraru, R. (2023). Geometrization of Kryvbas iron ore deposits. IOP Conf. Series: Earth and En-vironmental Science, 1254, 012067. https://doi.org/10.1088/1755-1315/1254/1/012067

Putra, D., Karian, T., Sulistianto, B. & Taherdito, A.H. (2024). The impact of underground support and mine open-ing profiles on the economics of underground mining pro-jects. IOP Conf. Series: Earth and Environmental Science, 1437, 012033. https://doi.org/10.1088/1755-1315/1437/1/012033

Baibatsha, A.B., Kembayev, M.K., Rais, S.E., Yan, W., Amantayev, A.K. & Biyakyshev, Y.T. (2025). Geodynamics of the Shu-Ile ore zone: Integration of geophysical, geo-chemical and cosmogeological methods. Engineering Jour-nal of Satbayev University, 147(4), 30-36. https://doi.org/10.51301/ejsu.2025.i4.05

Nguyen, P.M.V., Litwa, P., Makówka, J., Szczerbiński, K. & Phan, V.V. (2024). Investigation of the occurrence of inten-sive seismic activity at the “Polkowice-sIeroszowice” copper ore mine, Poland. Archives of Mining Sciences, 69(4), 559-573. https://doi.org/10.24425/ams.2024.152573

Nobahar, P., Pourrahimian, Y., Faradonbeh, R.S. & Koshki, F.M. (2025). Detection of Ore Type in Drilling Cores Using Machine Vision Algorithm. Journal of Mining and Environ-ment, 16(3), 789-809. https://doi.org/10.22044/jme.2024.14538.2739

Riahi, S., Abedi, M. & Bahroudi, A. (2023). A hybrid fuzzy ordered weighted averaging method in mineral prospectivity mapping: A case for porphyry Cu exploration in Chahargon-bad district, Iran. International Journal of Mining and Geo-Engineering, 57(4), 373-380. https://doi.org/10.22059/ijmge.2023.357315.595050

Morkun, V., Morkun, N., Tron, V., Serdiuk, O., Bobrov, Y. & Haponenko, A. (2023). Recognition of mineralogical and technological varieties of iron ore on the basis of ultrasound backscatter spectrograms. IOP Conf. Series: Earth and Envi-ronmental Science, 1254, 012071. https://doi.org/10.1088/1755-1315/1254/1/012071

Narwal, S., Deb, D., Islavath, S.R. & Samanta, G. (2025). Stability Assessment of Stopping Operations in Friable Ore Bodies under an Open Pit Mine using Strength-based Mining Sequence Factor. Journal of Mining and Environment, 16(2), 479-501. https://doi.org/10.22044/jme.2024.14872.2828

Mashingaidze, M.M., Bukasa, P.M. & Mupeti, R.T. (2025). Production Performance evaluation of the hoisting systems at an underground gold mine. Archives of Mining Sciences, 70(1), 29-44. https://doi.org/10.24425/ams.2025.154161

Kenzhaliyev, B.K., Ultarakova, A.A., Lokhova, N.G., Kassymzhanov, K.K. & Mukangaliyeva, A.O. (2025). Pro-duction of iron oxide pigment from the metallic component of ilmenite smelting. Engineering Journal of Satbayev Uni-versity. 147(1), 8-15. https://doi.org/10.51301/ejsu.2025.i1.02

Nizamova, A.T., Rasulov, A.K. & Maxmadiyev, D.R. (2025). Assessment of industrial waste disposal practices in the mining sector of Uzbekistan. Engineering Journal of Satbayev University, 147(4), 23-29. https://doi.org/10.51301/ejsu.2025.i4.04

Vu, T.T.D., Vu, T.T. & Le, T.D. (2022). Research on im-provement of blasting efficiency for driving unsupported roadways at Vi Kem mine, Lao Cai. National Conference on Earth sciences and natural resources for sustainable devel-opment (ERSD 2022), 614-623. https://ersd.humg.edu.vn/ersd/ersd2022/book

Google maps (2025). Location map of Vi Kem mine. Re-trieved from: https://www.google.com/maps/search/M%E1%BB%8F+

%C4%91%E1%BB%93ng+Vi+K%E1%BA%BDm/@22.5600625,103.6394917,11.71z?entry=ttu&g_ep=EgoyMDI1MTAwNC4wIKXMDSoASAFQAw%3D%3D

Vinacomin – Minerals Holding Corporation. (2020). Expla-nation of features of geological conditions of Vi Kem Cop-per Mine. Lao Cai, Vietnam: Department of Geodesy and Geology

Vinacomin – Minerals Holding Corporation. (2024). Expla-nation of design drawings of Vi Kem Copper Mine mining technology diagram in 2024 and mining plan in 2025. Lao Cai, Vietnam: Department of Mining Technology

Downloads

Published

2025-10-31

How to Cite

Vu, T. ., Le, P. ., Le, D. ., & Vu, D. . (2025). Solutions to improve the mining technology diagram for ore bodies at Vi Kem Copper Mine, Lao Cai province, Vietnam. Engineering Journal of Satbayev University, 147(5), 17–28. https://doi.org/10.51301/ejsu.2025.i5.03