Литий-ионды аккумуляторларға арналған оксидті электрод материалдарына шолу
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.51301/ejsu.2025.i3.02Ключевые слова:
литий-ионды аккумуляторлар, катодты материалдар, литиймен байытылған оксидтер, Lerich оксидтеріАннотация
Мақалада литий-ионды аккумуляторлардың (ЛИА) даму перспективалары қарастырылады, атап айтқанда, катодты материалдар ретінде қолданылатын литийге бай ауыспалы металл оксидтеріне баса назар аударылады. Негізгі назар xLi₂MnO₃·(1−x)LiMO₂ (мұндағы M = Mn, Ni, Co) формулалы материалдарға аударылған, олар жоғары разрядтық сыйымдылықпен (250 мА·сағ/г-дан астам) және меншікті энергиямен (950 Вт·сағ/кг-нан жоғары) ерекшеленеді, бұл оларды дәстүрлі катодты материалдар — LiCoO₂, LiMn₂O₄ және LiFePO₄-пен салыстырғанда тиімдірек етеді. Бұл оксидтер Li₂MnO₃-тің моноклиндік фазасы мен LiMO₂-нің тригональды фазасын біріктіріп, жоғары өнімділікке қол жеткізеді. Алайда, авторлар бірқатар мәселелерге назар аударады: төмен жылдамдық сипаттамалары, алғашқы циклдағы қайтымсыз сыйымдылық және циклдік жұмыс барысында кернеу мен сыйымдылықтың төмендеуі. Бұл кемшіліктер шпинель тәрізді құрылымдардың түзілуімен, электролитпен шекарада жанама реакциялармен және оттектің бөлінуімен байланысты. Мұндай кемшіліктерді жою үшін қорғаныс жабындарын қолдану, легирлеу және композиттік құрылымдар жасау сияқты модификациялау әдістері ұсынылады. Мақалада сондай-ақ кеңінен қолданылатын басқа катодты материалдарға — LiCoO₂, LiMn₂O₄, LiNiO₂ және олардың комбинацияларына шолу жасалып, олардың артықшылықтары мен шектеулері талданады. Әсіресе, LiNi1/3Co1/3Mn1/3O₂ және LiFePO₄ сияқты перспективалы материалдарға ерекше көңіл бөлінген, себебі олар электрохимиялық және экономикалық тұрғыдан оңтайлы қасиеттерге ие. Сондай-ақ литийге бай оксидтердің құрылымын оңтайландыру және деградация механизмдерін тереңірек түсіну үшін қосымша зерттеулердің қажеттілігі атап өтілген. Бұл мәселелерді шешу ЛИА үшін жоғары тиімді әрі тұрақты катодты материалдарды әзірлеуге мүмкіндік беріп, электромобильділік пен басқа да энергияны көп қажет ететін технологиялардың дамуына ықпал етуі мүмкін.
Библиографические ссылки
Xiao, B. & Sun, X. (2018). Surface and subsurface reactions of lithium transition metal oxide cathode materials: An over-view of the fundamental origins and remedying approaches. Advanced Energy Materials, 8(29), 1802057. https://doi.org/10.1002/aenm.201802057
Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. (2020). Photoluminescence‐based characterization of Halide perovskites for photovoltaics. Advanced Energy Materials, 10(26), 1904134. https://doi.org/10.1002/aenm.201904134
Wang, J., Wang, Y., Seo, D.-H., Shi, T., Chen, S., Tian, Y., & Ceder, G. (2020). A high‐energy NASICON‐type cathode material for Na‐ion batteries. Advanced Energy Materi-als, 10(10), 1903968. https://doi.org/10.1002/aenm.201903968
Kim, J., Lee, H., Cha, H., Yoon, M., Park, M. & Cho, J. (2018). Prospect and reality of Ni-rich cathode for commer-cialization. Advanced Energy Materials, 8(6), 1702028. https://doi.org/10.1002/aenm.201702028
Wu, J.-F., Wang, Q. & Guo, X. (2018). Sodium-ion conduc-tion in Na2Zn2TeO6 solid electrolytes. Journal of Power Sources, 402, 513-518. https://doi.org/10.1016/j.jpowsour.2018.09.048
Gam-Derouich, S., Pinson, J., Lamouri, A., Decorse, P., Bellynck, S., Herbaut, R., & Mangeney, C. (2018). Micro-patterned anti-icing coatings with dual hydropho-bic/hydrophilic properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(40), 19353-19357. https://doi.org/10.1039/c8ta06944a
Hannah, D.C., Sai Gautam, G., Canepa, P. & Ceder, G. (2018). On the balance of intercalation and conversion reac-tions in battery cathodes. Advanced Energy Materials, 8(20), 1800379. https://doi.org/10.1002/aenm.201800379
Sun, Q., Xi, B., Li, J.-Y., Mao, H., Ma, X., Liang, J., & Xiong, S. (2018). Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysul-fides for lithium-sulfur batteries. Advanced Energy Materi-als, 8(22), 1800595. https://doi.org/10.1002/aenm.201800595
Yu, X., Zhang, C., Luo, Z., Zhang, T., Liu, J., Li, J., Zuo, Y., Biendicho, J.J., Llorca, J., Arbiol, J., Morante, J.R., & Cabot, A. (2019). A low tem-perature solid state reaction to produce hollow MnxFe3-xO4 nanoparti-cles as anode for lithium-ion batteries. Nano Energy, 66, 104199. https://doi.org/10.1016/j.nanoen.2019.104199
Li, Y.B., Li, T., Dai, X.C., Huang, M.H., Hou, S., Fu, X.Y., Wei, Z.Q., He, Y., Xiao, G., & Xiao, F.X. (2020). Precise tuning of coordination positions for transition-metal ions via layer-by-layer assembly to enhance solar hydrogen produc-tion. ACS Applied Materials & Interfaces, 12(4), 4373-4384. https://doi.org/10.1021/acsami.9b14543
Goodenough, J.B., & Singh, P. (2015). Review – solid elec-trolytes in rechargeable electrochemical cells. Journal of the Electrochemical Society, 162(14), A2387-A2392. https://doi.org/10.1149/2.0021514jes
Shin, J.A., Jin, E.M., Na, B.K., Gu, H.B., Wang, W.L. & Jeong, S.M. (2016). Facile preparation and electrochemical properties of carbon-enfolded sulfur particles for Li-S bat-tery application. Journal of the Electrochemical Society, 163(2), A57-A61. https://doi.org/10.1149/2.0031602jes
Huang, B., Pan, Z., Su, X. & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286. https://doi.org/10.1016/j.jpowsour.2018.07.116
Braga, M.H., Grundish, N.S., Murchison, A.J. & Goode-nough, J.B. (2017). Alternative strategy for a safe rechargea-ble battery. Energy & Environmental Science, 10(1), 331-336. https://doi.org/10.1039/c6ee02888h
Ulvestad, A., Mæhlen, J.P., & Kirkengen, M. (2018). Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction. Journal of Power Sources, 399, 414-421. https://doi.org/10.1016/j.jpowsour.2018.07.109
Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286. https://doi.org/10.1016/j.jpowsour.2018.07.116
Yang, W. & Devereaux, T.P. (2018). Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectrosco-py to resonant inelastic scattering. Journal of Power Sources, 389, 188-197. https://doi.org/10.1016/j.jpowsour.2018.04.018
Liu, J., Zhang, C., Guo, S., Xu, L., Xiao, S. & Shen, Z. (2019). Microwave treatment of pre-oxidized fibers for im-proving their structure and mechanical properties. Ceramics International, 45(1), 1379-1384. https://doi.org/10.1016/j.ceramint.2018.08.311
Ming, F., Liang, H., Lei, Y., Zhang, W. & Alshareef, H. N. (2018). Solution synthesis of VSe2 nanosheets and their al-kali metal ion storage performance. Nano Energy, 53, 11-16. https://doi.org/10.1016/j.nanoen.2018.08.035
Le Mong, A. & Kim, D. (2019). Solid electrolyte membranes prepared from poly(arylene ether ketone)-g-polyimidazolium copolymer intergrated with ionic liquid for lithium secondary battery. Journal of Power Sources, 422, 57-64. https://doi.org/10.1016/j.jpowsour.2019.03.038
Che, H., Liu, C., Che, G., Liao, G., Dong, H., Li, C., Li, C. (2020). Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly effi-cient photocatalysts for superior H2 evolution. Nano Energy, 67, 104273. https://doi.org/10.1016/j.nanoen.2019.104273
Liu, S., Rasinski, M., Rahim, Y., Zhang, S., Wippermann, K., Reimer, U. & Lehnert, W. (2019). Influence of operating conditions on the degradation mechanism in high-temperature polymer electrolyte fuel cells. Journal of Power Sources, 439, 227090. https://doi.org/10.1016/j.jpowsour.2019.227090
Dong, L., Zhang, L., Lin, S., Chen, Z., Wang, Y., Zhao, X., Wu, T., Zhang, J., Liu, W., Lu, H., & Loh, K. P. (2020). Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemical-ly expanded graphite. Nano Energy, 70, 104482. https://doi.org/10.1016/j.nanoen.2020.104482
Billo, T., Shown, I., Anbalagan, A. K., Effendi, T.A., Sab-bah, A., Fu, F.Y., Chu, C.M., Woon, W.Y., Chen, R.S., Lee, C.H., Chen, K.H., & Chen, L.C. (2020). A mechanistic study of molecular CO2 interaction and adsorption on carbon im-planted SnS2 thin film for photocatalytic CO2 reduction ac-tivity. Nano Energy, 72, 104717. https://doi.org/10.1016/j.nanoen.2020.104717
Hu, X., Jiang, Z., Yan, L., Yang, G., Xie, J., Liu, S., Zhang, Q., Xiang, Y., Min, H., & Peng, X. (2020). Real-time visual-ized battery health monitoring sensor with piezoelec-tric/pyroelectric poly (vinylidene fluoride-trifluoroethylene) and thin film transistor array by in-situ poling. Journal of Power Sources, 467, 228367. https://doi.org/10.1016/j.jpowsour.2020.228367
Rao, K.K., Lai, Y., Zhou, L., Haber, J.A., Bajdich, M., & Gregoire, J.M. (2022). Overcoming hurdles in oxygen evolu-tion catalyst discovery via codesign. Chemistry of Materials: A Publication of the American Chemical Society, 34(3), 899-910. https://doi.org/10.1021/acs.chemmater.1c04120
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Engineering Journal of Satbayev University

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
<div class="pkpfooter-son">
<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/80x15.png"></a><br>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.
</div>