Обоснование пригодности угольных пластов Западного Донбасса (Украина) к подземной газификации угля

Авторы

  • В.С. Фальштинский Национальный технический университет «Днепровская политехника», Украина
  • Р.Е. Дичковский Горно-Металлургическая Академия в Кракове (AGH), Польша
  • В.Г. Лозинский Национальный технический университет «Днепровская политехника», Украина
  • П.Б. Саик Национальный технический университет «Днепровская политехника», Украина
  • М.И. Лозинская Геологический концерн «Геобит», Польша

DOI:

https://doi.org/10.51301/vest.su.2025.i1.05

Ключевые слова:

подземная газификация угля, пласт, газогенератор, каменный уголь, месторождение

Аннотация

В статье рассмотрены участки угольных пластов Западного Донбасса (Украина), которые могут быть пригодны к технологии подземной газификации угля (ПГВ). Данная технология в условиях сложного энергетического положения Украины может существенно повлиять на потребительский рынок энергоносителей. На основе детального изучения горно-геологических и горнотехнических условий десяти участков по критериям их пригодности к ПГВ осуществлен выбор оптимального участка и угольного пласта. Проанализированы структуры угольных пластов, боковых пород (кровли, подошвы), расположение и размер тектонических нарушений, гидрогеологические условия, а также технический и элементный состав угля. На основе проведенного исследования установлено, что экспериментальный подземный газогенератор рекомендуется разместить на каменноугольном пласте С5 участка №4, расположенного на территории с наиболее развитой инфраструктурой и оптимальными критериями пригодности к газификации. Практическое значение исследования состоит в том, что опыт отработки участка ПГВ №4 экспериментального газогенератора позволит скорректировать параметры технологии для последующего промышленного тиражирования. Предложенный подход к выбору участка и угольного пласта может быть апробирован также на других угольных месторождениях с похожими горно-геологическими и горнотехническими условиями.

Библиографические ссылки

Salieiev, I. (2024). Organization of processes for complex min-ing and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54-66. https://doi.org/10.33271/mining18.01.054

Starodubets, K.M., Dubosarskyi, V.R., & Mamyshev, I.Y. (2023). The state of reserves and prospective resources of the Southern oil and gas region of Ukraine. Mineral Resources of Ukraine, (2), 36-41. https://doi.org/10.31996/mru.2023.2.36-41

Astrov, V., Ghodsi, M., Grieveson, R., & Holzner, M. (2022). Russia’s invasion of Ukraine: assessment of the humanitarian, economic, and financial impact in the short and medium term. International Economics and Economic Policy, 19(2), 331-381. https://doi.org/10.1007/s10368-022-00546-5

Lytvyniuk, S.F., & Kurylo, M.M. (2024). Substantiation of condition parameters for the calculation of reserves of iron ore deposits to optimize development systems. Mineral Resources of Ukraine, (2), 16-20. https://doi.org/10.31996/mru.2024.2.16-20

Bielov, O.P., & Adamchuk, A.A. (2018). Substantiation of the ways to use lignite concerning the integrated development of lignite deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-13. https://doi.org/10.29202/nvngu/2018-3/6

Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material re-sources from DTEK coal mines based on sustainable develop-ment and ESG strategy. Mining of Mineral Deposits, 17(1), 1-16. https://doi.org/10.33271/mining17.01.001

Makarov, V., Perov, M., Bilan, T., Novoseltsev, O., & Zapo-rozhets, A. (2024). Technological State of Coal Mining in Ukraine. Geomining: Systems and Decision-Oriented Perspec-tive, 31-41. https://doi.org/10.1007/978-3-031-70725-4_2

Lozynskyi, V. (2023). Critical review of methods for intensify-ing the gas generation process in the reaction channel during un-derground coal gasification (UCG). Mining of Mineral Depos-its, 17(3), 67-85. https://doi.org/10.33271/mining17.03.067

Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221

Koval, V., Kryshtal, H., Udovychenko, V., Soloviova, O., Froter, O., Kokorina, V., & Veretin, L. (2023). Review of min-eral resource management in a circular economy infrastructure. Mining of Mineral Deposits, 17(2), 61-70. https://doi.org/10.33271/mining17.02.061

Abbas, Q., Yaqoob, H., Sajjad, U., Ali, H. M., & Jamil, M. M. (2025). Utilization of Local Coal in Pakistan Oil-Fired Power Plants and Future Clean Technologies for Power Generation. Case Studies in Chemical and Environmental Engineering, 101132. https://doi.org/10.1016/j.cscee.2025.101132

Keboletse, K.P., Ntuli, F., & Oladijo, O.P. (2021). Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technolo-gies: a review. International Journal of Coal Science & Tech-nology, 8(5), 817-843. https://doi.org/10.1007/s40789-020-00401-5

Dychkovskyi, R., Falshtynskyi, V., Lozynskyi, V., & Saik, P. (2015). Development the concept of borehole underground coal gasification technology in Ukraine. New Developments in Min-ing Engineering, 91-95. https://doi.org/10.1201/b19901-18

Lozynskyi, V. (2024). Numerical simulation of carbonaceous raw material combustion in a coal seam channel. Mining of Min-eral Deposits, 18(4), 109-124. https://doi.org/10.33271/mining18.04.109

Falshtynskyi, V., Dychkovskyi, R., Lozynskyi, V., & Saik, P. (2015). Analytical, laboratory and bench test researches of un-derground coal gasification technology in National Mining Uni-versity. New Developments in Mining Engineering, 97-106. https://doi.org/10.1201/b19901-19

Feng, Y., Chen, J., & Luo, J. (2024). Life cycle cost analysis of power generation from underground coal gasification with car-bon capture and storage (CCS) to measure the economic feasi-bility. Resources Policy, 92, 104996. https://doi.org/10.1016/j.resourpol.2024.104996

Wiatowski, M., Basa, W., Pankiewicz-Sperka, M., Szyja, M., Thomas, H. R., Zagorscak, R., & Kapusta, K. (2024). Experi-mental study on tar formation during underground coal gasifica-tion: Effect of coal rank and gasification pressure on tar yield and chemical composition. Fuel, 357, 130034. https://doi.org/10.1016/j.fuel.2023.130034

Su, F.Q., He, X.L., Dai, M.J., Yang, J.N., Hamanaka, A., Yu, Y.H., & Li, J.Y. (2023). Estimation of the cavity volume in the gasification zone for underground coal gasification under differ-ent oxygen flow conditions. Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309

Yin, Z., Xu, H., Chen, Y., Zhao, T., & Wu, J. (2023). Experi-mental simulate on hydrogen production of different coals in underground coal gasification. International Journal of Hydro-gen Energy, 48(19), 6975-6985. https://doi.org/10.1016/j.ijhydene.2022.03.205

Borgulat, J., Ponikiewska, K., Jałowiecki, Ł., Strugała-Wilczek, A., & Płaza, G. (2022). Are Wetlands as an Integrated Bioreme-diation System Applicable for the Treatment of Wastewater from Underground Coal Gasification Processes?. Energies, 15(12), 4419. https://doi.org/10.3390/en15124419

Wiatowski, M., Muzyka, R., Kapusta, K., & Chrubasik, M. (2021). Changes in properties of tar obtained during under-ground coal gasification process. International Journal of Coal Science & Technology, 8(5), 1054-1066. https://doi.org/10.1007/s40789-021-00440-6

Grabowski, J., Korczak, K., & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process. Process Safety and Environmental Protection, (148), 548-558. https://doi.org/10.1016/j.psep.2020.10.003

Laciak, M., Kačur, J., & Durdán, M. (2022). Modeling and Control of Energy Conversion during Underground Coal Gasi-fication Process. Energies, 15(7), 2494. https://doi.org/10.3390/en15072494

Gao, W., Zagorščak, R., & Thomas, H. R. (2022). Insights into ground response during underground coal gasification through thermo‐mechanical modeling. International Journal for Numeri-cal and Analytical Methods in Geomechanics, 46(1), 3-22. https://doi.org/10.1002/nag.3287

Kačur, J., Laciak, M., Durdán, M., & Flegner, P. (2023). Inves-tigation of underground coal gasification in laboratory condi-tions: A review of recent research. Energies, 16(17), 6250. https://doi.org/10.3390/en16176250

An, N., Zagorščak, R., Thomas, H. R., & Gao, W. (2021). A numerical investigation into the environmental impact of under-ground coal gasification technology based on a coupled thermal-hydro-chemical model. Journal of Cleaner Production, (290), 125181. https://doi.org/10.1016/j.jclepro.2020.125181

Biswas, A. K., Islam, M. R., & Habib, M. A. (2023). An ana-lytical investigation of critical factors to prioritize coalfields for Underground Coal Gasification–Bangladesh case. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e18416

Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental studies of the effect of design and technological solutions on the intensifi-cation of an underground coal gasification process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369

Mandal, R., & Maity, T. (2023). Operational process parameters of underground coal gasification technique and its control. Jour-nal of Process Control, 129, 103031. https://doi.org/10.1016/j.jprocont.2023.103031

Saik, P., & Berdnyk, M. (2022). Mathematical model and meth-ods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87-94. https://doi.org/10.33271/mining16.02.087

Gu, Y., Li, H., Dou, L., Wu, M., Guo, H., Huang, W., & Feng, L. (2024). Advance in detection and management for under-ground coal fires: A global technological overview. Combustion Science and Technology, 1-38. https://doi.org/10.1080/00102202.2024.2365260

Qin, B., Li, H., Wang, Z., Jiang, Y., Lu, D., Du, X., & Qian, Q. (2024). New framework of low-carbon city development of China: Underground space based integrated energy sys-tems. Underground Space, 14, 300-318. https://doi.org/10.1016/j.undsp.2023.06.008

Wei, Z., Jiang, L., Chen, S., Dong, Z., Chen, Y., Liu, B., ... & Ali, S. F. (2024). Towards A hydrogen economy: Understand-ing pore alterations in the context of underground coal gasifica-tion. Journal of Cleaner Production, 484, 144325. https://doi.org/10.1016/j.jclepro.2024.144325

Zou, C., Chen, Y., Kong, L., Fenjin, S., Shanshan, C., & Zhen, D. (2019). Underground coal gasification and its strategic sig-nificance to the development of natural gas industry in China. Petroleum Exploration and Development, 46(2), 205-215. https://doi.org/10.1016/S1876-3804(19)60002-9

Tabachenko, M., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Dychkovskyi R. (2016). Features of setting up a complex, com-bined and zero-waste gasifier plant. Mining of Mineral Deposits, 10(3), 37-45. http://dx.doi.org/10.15407/mining10.03.037

Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., & Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasi-fication. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1

Falshtynskyi, V., Dychkovskyi, V. Lozynskyi, V., & Saik, P. (2012). New method for justification the technological parame-ters of coal gasification in the test setting. Geomechanical Pro-cesses During Underground Mining – Proceedings of the School of Underground Mining, 201-208. https://doi.org/10.1201/b13157-35

Falshtynskyi, V., Dychkovskyi, R., & Illiashov, M. (2011). Engineering support of BUCG process in Solenovsk coal de-posits. Technical and Geoinformational Systems in Mining, 47-56. https://doi.org/10.1201/b11586

Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.

Pivnyak, G., Falshtynskyi, V., Dychkovskyi, R., Saik, P., Lozynskyi, V., Cabana, E., & Koshka, O. (2020). Conditions of Suitability of Coal Seams for Underground Coal Gasification. Key Engineering Materials, (844), 38-48. https://doi.org/10.4028/www.scientific.net/kem.844.38

Lozynskyi V. (2025). Multi-Criteria Assessment of Coal Seams Suitability for Co-Gasification Using the Preference Selection Index. Heliyon. Preprint.

Stovba, S.M., & Stephenson, R.A. (1999). The Donbas Foldbelt: its relationships with the uninverted Donets segment of the Dniepr–Donets Basin, Ukraine. Tectonophysics, 313(1-2), 59-83. https://doi.org/10.1016/S0040-1951(99)00190-0

Stovba, S., Khriashchevska, O., Mazur, S., Stephenson, R., Vengrovych, D., & Drachev, S. (2024). Hydrocarbon prospects in the Dniepr-Donets Basin, Ukraine, and the Ukrainian Carpa-thians: an overview. Annales Societatis Geologorum Poloniae, 94. https://doi.org/10.14241/asgp.2024.07

Van Hinsbergen, D.J., Abels, H.A., Bosch, W., Boekhout, F., Kitchka, A., Hamers, M., & Stephenson, R.A. (2015). Sedimen-tary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin, Ukraine). Scientific Reports, 5(1), 1-8. https://doi.org/10.1038/srep09099

Sachsenhofer, R.F., Privalov, V.A., & Panova, E.A. (2012). Basin evolution and coal geology of the Donets Basin. Interna-tional Journal of Coal Geology, (89), 26-40. https://doi.org/10.1016/j.coal.2011.05.002

Haidai, O., Ruskykh, V., Ulanova, N., Prykhodko, V., Cabana, E.C., Dychkovskyi, R., & Smolinski, A. (2022). Mine Field Preparation and Coal Mining in Western Donbas: Energy Secu-rity of Ukraine – Case Study. Energies, 15(13), 4653. https://doi.org/10.3390/en15134653

Saik, P., Maksymova, E., Lozynskyi, V., Cabana, E., & Petlo-vanyi, M. (2021). Synergistic approach as an innovative basis for obtaining a natural gas substitute. E3S Web of Conference, (230), 01022. https://doi.org/10.1051/e3sconf/202123001022

Nehrii, S., Nehrii, T., Bachurin, L., & Piskurska, H. (2019). Problems of mining the prospective coal-bearing areas in Don-bas. E3S Web of Conferences, (123), 01011. https://doi.org/10.1051/e3sconf/201912301011

Symanovych, H., Lisovytska, I., Odnovol, M., Ahaiev, R., & Poimanov, S. (2024). Rationale and modeling of technology for complex bottom-hole zone de-stressing of gas-dynamically ac-tive rock mass. Mining of Mineral Deposits, 18(2), 83-92. https://doi.org/10.33271/mining18.02.083

Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Don-bas plough longwall. Naukovyi Visnyk Natsionalnoho Hirny-choho Universytetu, (5). 26-32.

Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.

Bondarenko, B., Kovalevska, I., Krasnyk, V., Chernyak, V., Haidai, O., Sachko, R., & Vivcharenko, I. (2024). Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations. Mining of Mineral Deposits, 18(1), 67-81. https://doi.org/10.33271/mining18.01.067

Загрузки

Опубликован

2025-02-28

Как цитировать

Falshtynskyi, V. ., Dychkovskyi, R. ., Lozynskyi, V. ., Saik, P. ., & Lozynska, M. . (2025). Обоснование пригодности угольных пластов Западного Донбасса (Украина) к подземной газификации угля. Engineering Journal of Satbayev University, 147(1), 31–42. https://doi.org/10.51301/vest.su.2025.i1.05

Выпуск

Раздел

Науки о Земле