Геомеханическая оценка напряжённо-деформированного состояния структурно-неоднородных породных массивов Кыргызстана
DOI:
https://doi.org/10.51301/ejsu.2025.i2.05Ключевые слова:
горное дело, напряжённо-деформированное состояние, упругие характеристики, породный массивАннотация
Исследования направлены на оценку напряжённо-деформированного состояния породных массивов структурно неоднородных рудных месторождений Кыргызстана, выявление закономерностей распределения напряжений в зависимости от глубины и влияния тектонических разрывов, а также на установление взаимосвязи между упругими характеристиками пород и их прочностными свойствами. В работе использован комплекс методов, включающий полевые измерения методом разгрузки, позволяющие получать значения главных нормальных напряжений на различных глубинах, лабораторные испытания для определения скоростей упругих волн, модулей упругости и модулей сдвига, а также статистический анализ для построения регрессионных зависимостей. Кроме того, проведена реконструкция ориентировки главных напряжений и оценка влияния тектонических разрывов на распределение напряжений в массиве. Результаты исследования демонстрируют, что вертикальные напряжения в породном массиве, в первом приближении, соответствуют давлению веса вышележащих слоёв γH. Полученные регрессионные модели для крепких пород и массивов средней прочности подтверждают, что экспериментальные данные находятся между значениями, рассчитанными по зависимостям Н. Хаста, и значениями, обусловленными гидростатическим распределением напряжений. Исследование упругих характеристик пород выявило высокую степень анизотропии, при которой изменение скорости продольной волны непосредственно коррелирует с изменением модулей упругости и модуля сдвига. Полученные результаты позволяют разрабатывать более точные модели прогнозирования напряжённо-деформированного состояния рудных массивов и оптимизировать проектирование горных выработок.
Библиографические ссылки
Bogdetsky, V., Stavinskiy, V., Shukurov, E. & Suyunbaev, M. (2001). Mining industry and sustainable development in Kyr-gyzstan. Mining, Minerals and Sustainable Development, 110, 23-37
Aguirre-Unceta, R. (2024). Has Kyrgyzstan suffered from a resource curse?. The Extractive Industries and Society, 17, 101427. https://doi.org/10.1016/j.exis.2024.101427
Calabrese, L. (2024). Diversifying Away from Extractives: The Belt and Road Initiative, Chinese Capital and Industrialisation in the Kyrgyz Republic. The European Journal of Development Research, 36(3), 601-638. https://doi.org/10.1057/s41287-024-00632-1
Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V. & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environ-mental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977
Koval, V., Kryshtal, H., Udovychenko, V., Soloviova, O., Froter, O., Kokorina, V. & Veretin, L. (2023). Review of miner-al resource management in a circular economy infrastructure. Mining of Mineral Deposits, 17(2), 61-70. https://doi.org/10.33271/mining17.02.061
Yuldashev, F. & Sahin, B. (2016). The political economy of mineral resource use: The case of Kyrgyzstan. Resources Policy, 49, 266-272. https://doi.org/10.1016/j.resourpol.2016.06.007
Abdiev, A.R., Mambetova, R.Sh., Abdiev, A.A., & Abdiev, Sh. A. (2020). Studying a correlation between characteristics of rock and their conditions. Mining of Mineral Deposits, 14(3), 87-100. https://doi.org/10.33271/mining14.03.087
Gornostayev, S.S., Crocket, J.H., Mochalov, A.G. & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst. Canadian Mineralogist, 37(5), 1117-1129
Sotskov, V. & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overwork-ing. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35
Umarov, T., Abdiev, A., Moldobekov, K., Mambetova, R. & Isaev, B. (2023). Creation of digital maps of land disturbed by mining operations. E3S Web of Conferences, 420, 03023. https://doi.org/10.1051/e3sconf/202342003023
Bazaluk, O., Kuchyn, O., Saik, P., Soltabayeva, S., Brui, H., Lozynskyi, V. & Cherniaiev, O. (2023). Impact of ground sur-face subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, (13), 19327. https://doi.org/10.1038/s41598-023-46814-5
Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsion-alnoho Hirnychoho Universytetu, (4), 44-54
Rysbekov, K.B., Huayang, D., Nurpeisova, M.B., Lozynskyi, V.H., Kyrgyzbayeva, G.M., Kassymkanova, K. & Abenov, А.М. (2022). Modern monitoring tools – effective way to en-sure safety in subsoil use. Engineering Journal of Satbayev Uni-versity, 144(3), 34-40. https://doi.org/10.51301/ejsu.2022.i3.06
Shavarskyi, Ia., Falshtynskyi, V., Dychkovskyi, R., Akimov, O., Sala, D. & Buketov, V. (2022). Management of the longwall face advance on the stress-strain state of rock mass. Mining of Mineral Deposits, 16(3), 78-85. https://doi.org/10.33271/mining16.03.078
Song, J.F., Lu, C.P., Zang, A., Zhang, X.F., Zhou, J., Zhan, Z. W. & Zhao, L. M. (2024). Assessment of Microseismic Events via Moment Tensor Inversion and Stress Evolution to Under-stand the Rupture of a Hard–Thick Rock Stratum. Rock Mechan-ics and Rock Engineering, 57(11), 10009-10025. https://doi.org/10.1007/s00603-024-04066-3
Zhang, H., Guo, G., Li, H., Wang, T., Ni, J. & Meng, H. (2025). A new numerical method for calculating residual defor-mation in mined-out areas considering water-rock interaction and its application. Scientific Reports, 15(1), 11207. https://doi.org/10.1038/s41598-025-94001-5
Kononenko, M. & Khomenko, O. (2010). Technology of sup-port of workings near to extraction chambers. New Techniques and Technologies in Mining, 193-197. https://doi.org/10.1201/b11329-31
Matayev, A.K., Lozynskyi, V.H., Musin, A., Abdrashev, R.M., Kuantay, A.S. & Kuandykova, A.N. (2021). Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57-63. https://doi.org/10.33271/nvngu/2021-3/057
Fang, C., Yuan, Y., Chen, J., Gao, D. & Peng, J. (2024). Exam-ination of Green Productivity in China’s Mining Industry: An In-Depth Exploration of the Role and Impact of Digital Econo-my. Sustainability, 16(1), 463. https://doi.org/10.3390/su16010463
Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V. & Ovcharenko, A. (2024). Achieving climate neutrality in coal mining regions through the underground coal gasification. E3S Web of Conferences, 526, 01004. https://doi.org/10.1051/e3sconf/202452601004
Mussin, A., Imashev, A., Matayev, A., Abeuov, Ye., Shaike, N. & Kuttybayev, A. (2023). Reduction of ore dilution when min-ing low-thickness ore bodies by means of artificial maintenance of the mined-out area. Mining of Mineral Deposits, 17(1), 35-42. https://doi.org/10.33271/mining17.01.035
An, H., & Mu, X. (2025). Contributions to Rock Fracture In-duced by High Ground Stress in Deep Mining: A Review. Rock Mechanics and Rock Engineering, 58(1), 463-511. https://doi.org/10.1007/s00603-024-04113-z
Lan, T., Liu, Y., Yuan, Y., Fang, P., Ling, X., Zhang, C. & Feng, W. (2024). Determination of mine fault activation degree and the division of tectonic stress hazard zones. Scientific Re-ports, 14(1), 12419. https://doi.org/10.1038/s41598-024-63352-w
Salieiev, I., Bondarenko, V., Kovalevska, I., Malashkevych, D. & Galkov, R. (2025). Principles of mining-geological classifica-tion for maintaining mine workings in conditions of weakly met-amorphosed rocks. Mining of Mineral Deposits, 19(1), 26-36. https://doi.org/10.33271/mining19.01.026
Abdiev, A.R., Mambetova, R.Sh., Abdiev, A.A. & Abdiev, Sh.A. (2020). Development of methods assessing the mine workings stability. E3S Web of Conferences, 201, 01040. https://doi.org/10.1051/e3sconf/202020101040
Abdiev, A.R., Mambetova, R.Sh., Abdiev, A.A. & Abdiev, Sh.A. (2020). Razvitie metodov otsenki geomekhanicheskogo sostoyaniya porodnogo massiva vokrug gornykh vyrabotok. Nauchnye issledovaniya v Kyrgyzskoy Respublike, 1-12
Mambetov, Sh.A., Kozhogulov, K.Ch. & Abdiev, A.R. (2021). Vzaimosvyaz svoystv i sostoyaniya porod strukturno-neodnorodnykh mestorozhdeniy poleznykh iskopaemykh. Sov-remennye problemy mekhaniki, 43(1), 3-17
Abdiev, A.R., Mambetova, R.Sh. & Mambetov, Sh.A. (2017). Geomechanical assessment of Tyan-Shan's mountains structures for efficient mining and mine construction. Gornyi Zhurnal, (4), 1-9
Mambetov, Sh.A., Abdiev, A.R. & Mambetov, A.Sh. (2002). Zonal and step-by-step evaluation of the stressed-strained state of Tyan'-Shan' rock massif. Gornyi Zhurnal, (10), 1-12
Rahman, A., Shah, R.A., Yadava, M.G. & Kumar, S. (2024). Carbon and nitrogen biogeochemistry of a high-altitude Himala-yan lake sediment: Inferences for the late Holocene climate. Quaternary Science Advances, 14, 100199. https://doi.org/10.1016/j.qsa.2024.100199
Mambetov, Sh.A., Kozhogulov, K.Ch. & Abdiev, A.R. (2021). Kontrol svoystv i napryazhenno-deformirovannogo sostoyaniya porod strukturno-neodnorodnykh mestorozhdeniy poleznykh is-kopaemykh. Sovremennye problemy mekhaniki, 43(1), 35-49
Mambetov, Sh.A., Abdiev, A.R. & Mambetova, R.Sh. (2020). Osnovy geomekhaniki. Klassicheskiy uchebnik. Bishkek, KRSU
Eljufout, T. & Alhomaidat, F. (2024). Utilizing waste rocks from phosphate mining in Jordan as concrete aggregates. Results in Engineering, 22, 102350. https://doi.org/10.1016/j.rineng.2024.102350
Rezaei, M. & Mousavi, S.Z.S. (2024). Slope stability analysis of an open pit mine with considering the weathering agent: Field, laboratory and numerical studies. Engineering Geology, 333, 107503. https://doi.org/10.1016/j.enggeo.2024.107503
Patent KR №2238. (2020). Sposob otsenki geomekhanich-eskogo sostoyaniya porodnogo massiva vysokogornykh mes-torozhdeniy. Bishkek, Kyrgyzstan
Matayev, A., Abdiev, A., Kydrashov, A., Musin, A., Khvatina, N. & Kaumetova, D. (2021). Research into technology of fas-tening the mine workings in the conditions of unstable masses. Mining of Mineral Deposits, 15(3), 78-86. https://doi.org/10.33271/mining15.03.078
Abdiev, A.R., Mambetova, R.Sh. & Abdiev, A.A. (2020). Izuchenie zakonomernostey izmeneniya struktury i svoystv gornykh porod v zone tektonicheskikh narusheniy. V LKhKhIII Mezhdunarodnye nauchnye chteniya. Sbornik statey Mezhdu-narodnoy nauchno-prakticheskoy konferentsii, 111-114
Khomenko, O. & Bilegsaikhan, J. (2018). Classification of theories about rock pressure. Solid State Phenomena, 277, 157-167. https://doi.org/10.4028/www.scientific.net/SSP.277.157
Baymakhan, R.B., Muta, A.N., Tileikhan, A. & Kozhogulov, K.C. (2023). On the use of the finite element method in the study of the stress-strain state of the contour of the Annie Cave on Mount Arsia. Engineering Journal of Satbayev University, 145(2), 31-36. https://doi.org/10.51301/ejsu.2023.i2.05
Kazatov, U., Raimbekov, B., Bekbosunov, R., Ashirbaev, B. & Orokov, A. (2023). Some results of the study of rock properties of the Sulukta deposit. E3S Web of Conferences, 431, 03009. https://doi.org/10.1051/e3sconf/202343103009
Shakenov А., Abdiev, A.R. & Stolpovskih I. (2023). Energy potential of mining transport at mines of Kyrgyzstan located at high altitude. IOP Conference Series: Earth and Environmental Science, 1254, 012142. https://doi.org/10.1088/1755-1315/1254/1/012142
Kozhogulov, K.Ch. & Abdiev, A.R. (2023). Napryazhenno-deformirovannoe sostoyanie neodnorodnykh strukturnykh mas-sivov vysokogornykh rudnykh mestorozhdeniy Kyrgyzstana. Fundamentalnye i prikladnye voprosy gornykh nauk, 10(2), 39-46. https://doi.org/10.15372/FPVGN2023100206
Zhienbayev, A., Takhanov, D., Zharaspaev, M., Kuttybayev, A., Rakhmetov, B. & Ivadilinova, D. (2025). Identifying rational lo-cations for field mine workings in the zone influenced by mined-out space during repeated mining of pillars. Mining of Mineral Deposits, 19(1), 1-12. https://doi.org/10.33271/mining19.01.001
Mambetova, R.Sh., Abdiev, A.A. & Abdiev, A.R. (2023). Issledovaniya gidrogeologicheskikh usloviy Sulyuktinskogo bu-rougolnogo mestorozhdeniya dlya sozdaniya estestvennoy tsifrovoy gidrodinamicheskoy modeli. Vestnik Kyrgyzsko-Rossiyskogo Slavyanskogo universiteta, 23(8), 150-155
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Engineering Journal of Satbayev University

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
<div class="pkpfooter-son">
<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/80x15.png"></a><br>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.
</div>